Events

Jul
17
Wed
GNSS Antennas for Autonomous Vehicles: What You Need to Know! @ 4359 Mackenzie Building, Carleton University
Jul 17 @ 18:00 – 19:00

GNSS
Antennas for Autonomous Vehicles:

What You Need to Know!

 

Precise
and reliable positioning recently became a critical property of autonomous
vehicles like drones, driverless cars and more. Tallysman Wireless will explain
why the GNSS antenna is the most important component for accurate positioning
and will present the challenges of selecting the appropriate GNSS antenna for
diverse types of autonomous vehicles. Multiple properties of a GNSS antenna
like its phase center variation, ability to reject interferences or multipath
and sensibility to its environment will be analysed and guide lines will be
proposed.

 

Refreshments will be served!

Location: 4359 Mackenzie Building, Carleton University.

Map: https://carleton.ca/campus/map/

Time: 6:00 – 7:00 PM

Date: July 17th , 2019

 

BIOGRAPHY:

Julien
Hautcoeur received the M.Sc. degree in radio communication systems and
electronics from the Ecole Polytechnique of the University of Nantes, Nantes,
France, in 2007 and the Ph.D. degree in signal processing and
telecommunications from the Institute of Electronics and Telecommunications of
Rennes 1, Rennes, France, in 2011. In 2011, he was involved in postdoctoral
training at the University of Quebec in Outaouais (UQO), Gatineau, QC, Canada.
His research field was optically transparent antenna systems for telecommunications.
Since 2014 he works at Tallysman Wireless in Ottawa, Canada and specialized in
the design of high performance GNSS antennas and associated electronics.

 

GPSPlacement
Aug
19
Mon
Recent Advances in Retinal Imaging! @ Room 4359, Mackenzie Building
Aug 19 @ 18:00 – 19:30
Recent Advances in Retinal Imaging! @ Room 4359, Mackenzie Building | Ottawa | Ontario | Canada

ABSTRACT:

Over 250 million people in the world are blind or visually impaired. But 75% of visual impairment can be treated or entirely prevented if detected early, monitored effectively, and treated promptly. Various retinal imaging instruments have been developed to assist the screening, diagnosing and monitoring of vision critical eye diseases. These instruments range from traditional ophthalmoscope to digital fundus camera; from ocular tomography (OCT) to laser scanning ophthalmoscope. In this presentation the speaker will attempt to explain the principle of retinal imaging; give an overview on the advances in retinal imaging; and discuss the opportunities for innovation in vision care and retinal imaging.

SPEAKER:

Dr Kexing Liu is the president and CEO of OcuXcel Corporation, a technology company based in Kanata, Ontario, dedicated to providing advanced technology solutions and developing new products from a global tech workforce for ophthalmology and vision health. Kexing received his Ph.D. degree from University of Manchester (UMIST), UK. One of his first professional and technology contribution was in pioneering the integration and qualification of GPS navigation technology into the on-board flight management systems for civil aviation as a project leader at CMC Electronique, Montreal. Later he joined a start-up called Cambrian Systems Corporation, Kanata, He was one of the the principal architects for the world’s first metro DWDM system product – OPTera (OM5K) at Cambrian. The company was later acquired by Nortel Networks. The OM5K as an extremely profitable line of product has generated over US$3 billion revenue for Nortel (now Ciena) since the acquisition. Later on, Kexing had an opportunity to serve as the principal of Mira Connections, a consulting business helping medical device companies on systems engineering and management issues. Most recently Kexing has architected multispectral digital ophthalmoscope for retinal health screening. Kexing has published more than 30 scientific papers on fiber optics and photonics. He is inventor/co-inventor for 17 granted patents ranging from photonics, optical communications systems, control systems engineering, and ophthalmology instruments. Kexing is a senior member of IEEE and is currently serving as the chair of an IEEE Canada committee responsible for outreach.

This event is organized by IEEE WIE and sponsored by IEEE Photonics Society – Ottawa Section!!

Kexing

 

Oct
11
Fri
Advanced optical sources for spectrally efficient photonic systems – Liam Barry, Dublin City University @ Advanced Research Complex (ARC), uOttawa
Oct 11 @ 09:00 – 10:30

Advanced Optical Sources for Spectrally Efficient Photonic Systems
Liam Barry,
Dublin City University

 

Abstract

The continuing growth in demand for bandwidth (from residential and business users), necessitates significant research into new advanced technologies that will be employed in future broadband communication systems. Two specific technologies which are becoming increasingly important for future photonic
systems are wavelength tunable lasers and optical frequency combs. Although these topics have been studied for over two decades their significance for the development of future ultra-high capacity photonic systems has only recently been fully understood. Wavelength tunable lasers are currently becoming the
norm in optical communication systems because of their flexibility and ability to work on any wavelength. However, as their operating principles are different to standard single mode lasers they can effect how future systems will operate.

For example as optical transmission systems move towards more coherent transmission (where the data is carried using both the intensity and phase of the optical carrier), the phase noise in these tunable lasers will become increasingly important. Optical frequency combs also have many applications for
future photonics systems, and for telecommunications they can be used to obtain the highest spectral efficiency in optical transmission systems by employing the technology of optical frequency division multiplexing (OFDM) that has been widely employed to increase spectral efficiency in wireless systems. Wavelength tunable lasers and optical frequency combs are thus topics at the leading edge of current photonics systems research, and their detailed understanding promises new applications in all-optical signal processing, optical sensing and metrology, and specifically telecommunications. This talk will focus on the development and characterization of various wavelength tunable lasers and optical frequency combs, and then outline how these sources can be employed for developing optical transmission systems and networks which make the best use of available optical spectrum.

Bio

Liam Barry received his BE (Electronic Engineering) and MEngSc (Optical Communications) from University College Dublin and his PhD from the University of Rennes. His main research interests are: all-optical signal processing, optical pulse generation and characterization, hybrid radio/fibre communication
systems, wavelength tuneable lasers for reconfigurable optical networks, and optical performance monitoring. He has worked as a Research Engineer in the Optical Systems Department of France Telecom’s Research Laboratories (now known as Orange Labs), and a Research Fellow at the Applied Optics Centre in Auckland University. He is currently a Full Professor in the School of Electronic Engineering at Dublin City University, establishing the Radio and Optical Communications Laboratory, and is a Principal Investigator for Science Foundation Ireland. He has published over 500 articles in internationally peer reviewed journals and conferences, holds 9 patents in the area of optoelectronics, and has co-founded two companies in the photonics sector.

 

Oct
19
Sat
IEEE Ottawa Seminar Series on AI and Machine Learning – Sponsored by IEEE Ottawa CS Chapter, ComSoc Chapter, and SP Chapter, jointly with Vitesse- Reskilling
Oct 19 @ 00:07 – 01:07

Date Wednesday, Oct 30, 2019

Location 359 Terry Fox Drive, Kanata, Ontario

Agenda

       11:30 AM – 12:00 PM: Light Lunch and Networking

       12:00 PM – 1:00 PM  : Presentation and Q&A

1:00 PM – 1:30 PM    : Post Presentation Networking

Title of the Talk AI-Powered 5G Networks
& Beyond

Speaker  Hatem Abou-zeid 

Summary

5G Networks are anticipated
to transform modern societies by providing an ultra-reliable, high-speed
communications infrastructure that will connect billions of devices including
vehicles, machines, and sensors. Both the complexity of such networks and the
diversity of application requirements will be unprecedented. This mandates
novel, autonomous network configuration and operation that can anticipate and
react to changes in traffic, topology, and interference conditions to ensure
seamless quality of experience and reliability. In this talk I will discuss
AI-driven networking use-cases elaborating on the practical challenges of
industrial deployments. I will then highlight directions where research is
needed to further expedite and facilitate the development of AI-powered
networks.

Biography

Hatem Abou-zeid is a
Senior 5G Systems Designer at Ericsson Canada where he drives research and
system development for 5G radio access networks. Prior to that he held
industrial positions at CISCO Systems and Bell Labs in addition to postdoctoral
and research assistant affiliations at Queen’s University, Canada. His research
focuses on the application of machine learning in 5G networks with particular
emphasis on anticipatory and adaptive algorithms drawing on methods from
reinforcement learning, spatio-temporal forecasting, deep learning and
stochastic optimization. Dr. Abou-zeid is very passionate about developing
strong industry-university collaborations that foster applied, innovative
research, and he leads multiple academic partnerships on intelligence and
analytics in future networks.

Oct
22
Tue
The Lightning Phenomenon @ 4124-ME (Meckenzie Building), Carleton University
Oct 22 @ 12:00 – 13:00

IEEE  Distinguished Lecturer Presentation hosted jointly by the IEEE Ottawa EMC and CASS/SSCS/EDS Chapters:

 

Speaker  :     Dr. Marcos Rubinstein, Professor, University of Applied Sciences of Western Switzerland

Topic    :     The Lightning Phenomenon

Date     :     Tuesday October 22, 2019

Time     :     12(noon) – 1pm

Location :     4124-ME (Meckenzie Building), Carleton University, 1125 Colonel By Drive, Ottawa – K1S5B6

 

Registration:  Free, Please E-mail Ram Achar (achar@doe.carleton.ca)

Refreshments: Served

 

Parking  : Payment based Metered Parking spots in the campus

 

Organizers:

               Ram Achar, Dept. of Electronics, Carleton University

               Chairman CASS/SSCS/EDS Chapters

               achar@doe.carleton.ca

               Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter

 

Abstract

Lightning is one of the primary causes of damage and malfunction of telecommunication and power networks and one of the leading causes of weather-related deaths and injuries.

Lightning is composed of numerous physical processes, of which only a few are visible to the naked eye.

This lecture presents various aspects of the lightning phenomenon, its main processes and the technologies that have been developed to assess the parameters that are important for engineering and scientific applications. These parameters include the channel-base current and its associated electromagnetic fields.

The measurement techniques for these parameters are intrinsically difficult due to the randomness of the phenomenon and to the harsh electromagnetic environment created by the lightning itself.

Besides the measurement of the lightning parameters, warning and insurance applications require the real-time detection and location of the lightning strike point. The main classical and emerging lightning detection and location techniques, including those used in currently available commercial lightning location systems will be described in the lecture. The newly proposed Electromagnetic Time Reversal technique, which has the potential to revolutionize lightning location will also be presented.

 

Biography

Marcos Rubinstein received the Master’s and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville.

In the decade of the 1990’s, he worked as a research engineer at the Swiss Federal Institute of Technology, Lausanne and as a program manager at Swisscom in the areas of electromagnetic compatibility and lightning. Since 2001, he is a professor at the University of Applied Sciences of Western Switzerland HES-SO, Yverdon-les-Bains, where he is currently responsible for the advanced Communication Technologies Group. He is the author or coauthor of 300 scientific publications in reviewed journals and international conferences. He is also the coauthor of nine book chapters and the co-editor of a book on time reversal. He served as the Editor-in-Chief of the Open Atmospheric Science Journal, and currently serves as an Associate Editor of the IEEE Transactions on EMC.

Prof. Rubinstein received the best Master’s Thesis award from the University of Florida, the IEEE achievement award and he is a co-recipient of the NASA’s Recognition for Innovative Technological Work award. He also received the ICLP Karl Berger award. He is a Fellow of the IEEE and an EMP Fellow, a member of the Swiss Academy of Sciences and of the International Union of Radio Science.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.