IEEE Ottawa News

Share your Experience

Have you recently (or not-so-recently) transitioned from university or academia to a STEM career? We are planning a series of talks this summer to help the next generation of grads […]
Full Article

[Webinar Recording]: Environmental Entrepreneurship – Bridging the Gap between Innovation and Function

On Dec. 2nd, 2020, we had a privilege to host a webinar about environmental entrepreneurship and bridging the gap between innovation and function. If you missed it, check out the […]
Full Article

IEEE WIE Ottawa Receives the 2020 WIE Canada Award!

We are glad to inform you that the IEEE WIE Ottawa Affinity Group is the winner of the 2020 IEEE WIE Canada Group of the Year Award for Large Sections. IEEE WIE Ottawa would like to […]
Full Article

2020 Ottawa Photonics Student Paper Award

The IEEE Ottawa Photonics Chapter, is pleased to announce the winner of the 2020 Ottawa Photonics Student Paper Award First Place: Nikaya Snell,  Winning paper “Nanowatt Thermal Radiation Sensing using Silicon […]
Full Article

IEEE Ottawa Section 76th Annual General Meeting

This year due to the public health concerns and restrictions on public gathering due to the COVID-19, 76th Annual General Meeting (AGM) of the IEEE Ottawa Section will be held […]
Full Article

Upcoming Events

May
14
Fri
AI to Enable Digital Medicine and Detect COVID-19 @ Online
May 14 @ 11:00 – 12:00

Abstract  

Digitalize human beings using biosensors to track our complex physiologic system, process the large amount of data generated with artificial intelligence (AI) and change clinical practice towards individualized medicine: these are the goals of digital medicine. In this talk, we discuss how to design AI solutions in the clinical space and what are the key aspects to make a difference. We focus on two critical clinical topics that need AI: 1) atrial fibrillation (AF), and 2) viral illnesses (COVID-19). AF is the most common sustained cardiac arrhythmia, associated with stroke, heart failure and coronary artery disease. AF detection from single-lead electrocardiography (ECG) recordings is still an open problem, as AF events may be episodic and the signal noisy. We conduct a thoughtful analysis of recent convolutional neural network architectures developed in the computer vision field, redesigned to be suitable for a one-dimensional signal, and we evaluate their performance in the detection of AF using 200 thousand seconds of ECG, highlighting the potential and pitfall of this technology. We also discuss how to explain (global and local post hoc explanations) this AI model for AF detection using features that are commonly used by a cardiologist.

To tackle the problem of COVID-19, we start with an overview of continuous, passively monitored vital signs from 200,000 individuals wearing a Fitbit wearable device for 2 years. This large study provides the baseline for DETECT, our app-based, nationwide clinical study enrolling individuals who routinely use a smartwatch or other wireless devices to determine if individualized tracking of changes in heart rate, activity and sleep can provide early diagnosis and self-monitoring for COVID-19. We analyze data from more than 36,000 individuals, showing how we can discriminate (on an individual level) between COVID-19 and other types of infections. We discuss how this can impact both the individual and public health, and how the use of AI can be a game changer in this fight against the virus.

 

Speaker’s Bio

Giorgio Quer is the Director of Artificial Intelligence at the Scripps Research Translational Institute, where he is leading the Data Science and Analytics team within the All of Us Research Program’s Participant Center (NIH).

His research focuses on artificial intelligence and probabilistic modeling applied to heterogeneous data signals, in order to extract key information and make predictions on future occurrences based on past data. He is involved in several digital medicine initiatives within the Scripps Research Digital Trials Center. For the DETECT study, he is developing algorithms to predict COVID-19 and other viral infections from wearable sensor data. He is responsible for collaborations with several industry partners, studying changes in heart rate and sleep data monitored by commercial wearable devices. He is also interested in the detection and modeling of atrial fibrillation from single-lead ECG signals. He is leading the collaboration with the Halicioglu Data Science Institute at UC San Diego towards the development of new AI models for health data.

He received his Ph.D. degree in Information Engineering from the University of Padova, Italy, and he continued his studies as a Postdoctoral researcher with the Qualcomm Institute at the University of California San Diego. He is a Senior Member of the IEEE and a Distinguished Lecturer for the IEEE Communications society.

Contact: Wahab Almutadi @ Almuhtadi@ieee.org or Eman Hammad @ eman.hammad.ca@ieee.org

IEEE-ComSocOttawaWebinar-AI_DIG_MED-GiorgioQuer V2
May
20
Thu
The power of data: Utilizing Machine Learning for Earth, the Sun, and Mars @ Online
May 20 @ 18:00 – 19:00

Abstract:

Data is everywhere and can lead to incredibly valuable insights when harnessed correctly. From automating daily tasks to discovering breakthrough science, to making predictions about the future, utilizing data with machine learning is a fast and ever-evolving field of technology. In this talk, Kelsey will discuss her experiences and challenges using machine learning for space applications, focusing on uses for satellites orbiting Earth, how we can better understand our Sun and its interaction with our atmosphere, and how we can incorporate machine learning into future Mars rover missions.

About the speaker:

Kelsey Doerksen is a Space Systems Engineer in satellite operations at Planet, a San Francisco-based company that operates the world’s largest Earth Observation satellite constellation. In her role, she is responsible for maintaining the health and productivity of 100s of satellites daily and develops software to automate operations and detect anomalous satellite behavior. Kelsey holds a bachelor’s degree from Carleton University in Aerospace Engineering: Space Systems Design and a Master’s in Electrical and Computer Engineering from the University of Western Ontario. She researches with the Paris Observatory in the fields of Space Weather and Space Debris and has previously interned at the NASA Jet Propulsion Lab with the Machine Learning and Instrument Autonomy Group. Kelsey is beginning her Ph.D. in the Autonomous Intelligent Machines and Systems program at the University of Oxford this Fall, where she will be utilizing machine learning and Earth Observation imagery to research the impacts of climate change on our planet.

Poster_ML_Kelsey
LEO Satellites – They can fly, but can they stick?! @ Online
May 20 @ 19:00 – 21:00

Abstract:

Over a dozen LEO satellite constellations are in the planning or launch stages to deliver consumer, IoT, or enterprise access services. The talk will provide an overview of developments in LEO satellites for telecommunications; and explore competitive threats and synergies with the telecom sector, and attempts to answer the question on the economic viability of these constellations.

Speaker Biography:

Frank Rayal is founding partner at Xona Partners, a boutique management and technology advisory firm. His focus is on enabling companies leverage new technologies and market trends to develop new revenues. Frank co-founded BLiNQ Networks and held senior product management and business development positions at Ericsson, Redline, and Metawave. He holds a BS in electrical engineering from Case Western Reserve University, Cleveland, Ohio, and an MASc in electrical engineering and an MBA from the University of Toronto, Canada.

May
25
Tue
Machine Learning in Biomedical Data @ Online
May 25 @ 18:00 – 19:00

Abstract:

In the digital age, the amount of worldwide data that is being generated on a daily basis is rapidly growing, reaching 175 zettabytes by 2025. These massive volumes of data have led to growing interest in using Machine Learning (ML) algorithms to extract valuable insights from databases. ML techniques can be considered as the foundation of a broad spectrum of next-generation technologies, including medical applications.

In this presentation, the role of ML in medical applications will be discussed. A newly developed data-driven classification algorithm will be explained, and its performance for the classification of biological datasets will be investigated and compared with the well-known classification models.

Speakar Bio:
Behnaz Fakhar Firouzeh is in the final semester of her Ph.D. in Electrical and Computer Engineering at Carleton University. She has been working on signal processing and Compressive Sensing (CS) for over 8 years. She also has 5 years of experience in developing constraint optimization algorithms. Her developed algorithms successfully have been applied in different areas such as signal processing, Machine Learning, and artificial intelligence. Behnaz has (co)authored several articles in different journals and conference proceedings.

Poster_ML_Behnaz
Jun
2
Wed
Package Requirements for data rates of 112 Gbps and Beyond @ Online
Jun 2 @ 17:00 – 18:30

Abstract: As the data rates increase rapidly in highspeed systems– such as SerDes and memory systems– to meet the bandwidth growth intensified by various applications, the electrical performance of packages has become critical. The bump and BGA or pin assignments, the layer stack up, and package material selection are very important to meet the signal and power integrity requirements. In addition, the role of new emerging 2.5D and 3D IC packaging platforms with ever increasing system integration requirements have made the role of packaging even more important. The sources of signal loss, noise
coupling and discontinuities in packages must be fully understood and minimized when designing packages. At the same time, the design and development of packages have to meet cost, performance, form factor and reliability goals. In this talk we will examine the key electrical characteristics: signal loss, signal crosstalk, return loss, mode conversion, power integrity and other important factors necessary to meet the performance requirements of high-speed systems with data rates of 112 Gbps and beyond.

Biography: Dr. Wendemagegnehu (Wendem) T. Beyene (M’88–SM’05) was born in Addis Ababa, Ethiopia. He received the B.S. and M.S. degrees in electrical engineering from Columbia University,
New York, NY, USA, in 1988 and 1991, respectively, and the Ph.D. degree in electrical and computer engineering from the University of Illinois at Urbana-Champaign, USA, in 1997. In the past, he was employed by IBM, Hewlett-Packard, and Agilent Technologies. In 2000, he joined Rambus Inc., Los
Altos, CA, USA, and served as a senior principal engineer responsible for signal integrity of multi-gigabit parallel and serial interfaces. During 2017-2020 he served as principle engineer with responsible for signal and power integrity analysis of high-performance FPGA including fabric and high-speed I/O subsystems as well as I/O modeling. In 2020 he joined Facebook as a Analog & Mixed-Signal Architect
in Facebook Reality Lab.

Dr. Beyene has authored or co-authored numerous refereed publications in various leading IEEE Transactions and conferences. These publications covered various disciplines including package and interconnect modeling, analysis and optimization. He is currently an Associate Editor of IEEE Trans. On CPMT and is a Senior Member of Institute of Electrical and Electronic Engineers (IEEE). He also serves on several leading technical program committees, including EPEPS and SPI.

Registration: Free
NOTE: Preference given to IEEE EMC CPMT/ED/CAS/SSCS/APS/MTT society members.

To register, please reply to this e-mail.
Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter
Syed.Bokhari@fidus.com,
Office :(613) 690 – 6101, Cell: (613) 355 – 6632

Wendem_DL_announcement

Careers

Publications

Join IEEE or a Society

Member Services

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.