Events

Jun
22
Mon
IEEE CANADA TECHNOLOGY LEADERSHIP WEBINAR SERIES – III @ WebEx
Jun 22 @ 14:00 – 15:00
IEEE CANADA TECHNOLOGY LEADERSHIP WEBINAR SERIES – III
Speaker: Tom Coughlin of IEEE USA

Topic: IEEE-USA Supports Public Policy For A Better World 

IEEE-USA supports public policy and career and member services for IEEE members in the USA.  This talk will include a brief discussion on what IEEE-USA does and will focus on its public policy activities to support future technologies, funding of science and technology, immigration policies that support a path to citizenship and support for engineers and technologists.  I will also discuss the impact of the COVID-19 epidemic and what what IEEE and IEEE-USA is doing to help its members as well as society as a whole, to recover from this extraordinary event.  This talk will include discussion of the future of work and the role of technology to enable remote work and new tools to work together in the real world even when we can’t be there physically.

Biography:

Tom Coughlin, President, Coughlin Associates is a digital storage analyst and business and technology consultant.  He has over 39 years in the data storage industry with engineering and management positions at several companies.  Coughlin Associates consults, publishes books and market and technology reports (including The Media and Entertainment Storage Report and an Emerging Memory Report), and puts on digital storage-oriented events.  He is a regular storage and memory contributor for forbes.com and M&E organization websites.  He is an IEEE Fellow, Past-President of IEEE-USA and is active with SNIA and SMPTE. For more information on Tom Coughlin and his publications and activities go to www.tomcoughlin.com.

Jul
9
Thu
Josephson Arbitrary Waveform Synthesizer as a Quantum Standard of Voltage and Current Harmonics
Jul 9 @ 18:30 – 19:30

Title: Josephson Arbitrary Waveform Synthesizer as a Quantum Standard of Voltage and Current Harmonics

Speaker: Dr. Dimitrios Georgakopoulos, Senior Research Scientist, National Measurement Institute, Sydney, Australia

Date/Time: Thursday, July 09, 2020, 6:30 pm – 7:30 p.m. EDT

Abstract: Josephson arbitrary waveform synthesizers (JAWS) are becoming a viable technology for national metrology institutes and industry to establish quantum standards of direct and alternating voltage. At the National Measurement Institute of Australia (NMIA) we have extended the application of the JAWS to provide a standard of both the magnitude and the phase of harmonics in a distorted waveform. Harmonic analysis is critical in a number of industrial applications such as electric power systems, power electronics, characterization of systems and materials and acoustics and vibration. At present, in the calibrations of power analyzers, the traceability of the magnitude of the harmonics is based on ac-dc transfer measurements. However, there is a gap in the traceability of the phase of the harmonics relative to the fundamental. The NMIA calibration system uses a JAWS chip from the National Institute of Standards and Technology (NIST), USA, a precision inductive voltage divider and a set of current shunts designed and manufactured by NMIA. For distorted waveforms with harmonic magnitudes from 5% to 40% of the fundamental, the calibration system can measure odd harmonics up to the 39th with magnitude uncertainties better than 0.001 % of the fundamental for voltage (from 0.01 V to 240 V) and current (from 0.005 A to 20 A) waveforms. The best phase uncertainties range from 0.001° to 0.010° (k = 2.0), depending on the harmonic number and harmonic magnitude. We anticipate that the ability of the JAWS to generate distorted waveforms with the lowest possible uncertainty in the magnitude, and phase spectra will make it a unique tool for low-frequency spectrum analysis.

Speaker’s Bio: Dimitrios Georgakopoulos (IEEE AM’11–M’12–SM’12) was born in Athens, Greece, in 1972. He received his B.Eng. degree in electrical engineering from the Technological Educational Institution of Piraeus, Egaleo, Greece, in 1996; his M.Sc. degree in electronic instrumentation systems from the University of Manchester, Manchester, UK, in 1999; and Ph.D. in electrical engineering and electronics from the University of Manchester Institute of Science and Technology, Manchester, UK, in 2002. From 2002 to 2007, he worked as a research scientist at the National Physical Laboratory, UK. In 2007, he joined the National Measurement Institute, Australia, as a research scientist, where he has been working on the development of quantum voltage standards and low frequency electromagnetic compatibility (EMC) standards. Dr Georgakopoulos is an Associate Editor of the IEEE Transactions on Instrumentation and Measurement, member of the IEEE IMS Measurements in Power Systems Committee (TC‑39), member of the NATA Accreditation Advisory Committee for Calibrations, and member of the American Association for the Advancement of Science (AAAS), USA.

Admission: Free, but registration is required at https://events.vtools.ieee.org/m/233847.For any additional information, please contact by e-mail: branislav@ieee.org or ajit.pardasani@ieee.org.

Jul
15
Wed
Resource Management for Massive Connectivity in Future Wireless Networks
Jul 15 @ 14:00 – 15:00
Resource Management for Massive Connectivity in Future Wireless Networks

Registration is required. A link to the event will be sent to those registered closer to the event date.

Register here: https://www.eventbrite.ca/e/resource-management-for-massive-connectivity-in-future-wireless-networks-tickets-111059596242

About this Event

Future wireless networks (beyond 5G/sixth-generation (6G) networks)
are envisioned to support 3D communication by integrating terrestrial
and aerial networks. The objective is to provide connectivity to a large
number of devices (known as massive connectivity), to support
substantial traffic demands, and expand coverage. However, effective
resource management in future wireless networks is a challenge because
of massive resource-constrained devices, diverse quality-of-service
(QoS) requirements, and a high density of heterogeneous devices. In this
seminar, I will present my recent research progress which is focused on
communication networking aspects of the Internet of Things (IoT), with
emphasis on algorithm design, network architecture development, and
system-level performance analysis. I will provide a brief discussion on
my three most significant contributions which focuses on the design of
novel algorithms and communication protocols for IoT networks, that have
both (i) enhanced network performance, in terms of spectrum efficiency,
coverage, and energy efficiency, and (ii) satisfied a wide range of IoT
devices’ requirements and constraints. I will then share long-term goal
of my research program which is to develop efficient and low complexity
resource management schemes to tackle the challenges of seamless
connectivity of heterogeneous devices anytime and anywhere. Finally, I
will present my short-term objectives in the next five years which are
to develop resource management schemes for massive connectivity in
future terrestrial networks, aerial networks, and self-sustainable
networks (SSNs) while considering different objectives and constraints,
including network scalability, reliability, latency, efficiency
(spectral usage and energy consumption), and complexity.

BIOGRAPHY

Waleed
Ejaz (S’12-M’14-SM’16) is an Assistant Professor in the Department of
Applied Science & Engineering at Thompson Rivers University,
Kamloops, BC, Canada. He is also the founding director of Next
Generation Wireless Networks (NEWNET) research laboratory. Previously,
he held academic and research positions at Ryerson University, Carleton
University, and Queen’s University in Canada. He received the B.Sc. and
M.Sc. degrees in Computer Engineering from the University of Engineering
and Technology, Taxila, Pakistan and the National University of
Sciences and Technology, Islamabad, Pakistan, and the Ph.D. degree in
Information and Communication Engineering from Sejong University,
Republic of Korea, in 2014. He has co-authored over 90 papers in
prestigious journals and conferences, and 3 books. His current research
interests include Internet of Things (IoT), energy harvesting, 5G and
beyond networks, and mobile edge computing. He is an Associate Editor of
the IEEE Communications Magazine, IEEE Canadian Journal of Electrical
and Computer Engineering, and the IEEE ACCESS. Dr. Ejaz completed
certificate courses on “Teaching and Learning in Higher Education” from
the Chang School at Ryerson University. He is a registered Professional
Engineer (P.Eng.) in the province of British Columbia, Canada. Dr. Ejaz
is a senior member of IEEE, member of ACM, and ACM distinguished
speaker.

#IEEEWIEOttawa

Aug
10
Mon
WIE Can-with ANCWT, Advancing New Canadian Women in Technology
Aug 10 @ 17:30 – 19:00
WIE Can-with ANCWT, Advancing New Canadian Women in Technology

Registration/Ticket URL

https://www.eventbrite.ca/e/wie-can-with-ancwt-advancing-new-canadian-women-in-technology-tickets-114836298460

Event Website

https://wie.ieeeottawa.ca/event/wie-can-with-ancwt-advancing-new-canadian-women-in-technology/

Abstract:

In this ever-changing world, it’s important to have the support of someone who could help and guide us to advance in our career. Women are great achievers, but due to the systemic bias, many are unable to climb up to leadership positions in their career. Women empowerment is very much needed especially in these tough times and promoting women by providing platforms where they could build themselves is need of the hour. Here in IEEE WIE, we understand its importance and try to provide such platforms especially to the women in our society who lag behind in their learning path because of many reasons and couldn’t come up. IEEE wants every woman to achieve what they desire to be. We promote not only women but also men who understand and go by our notion.

ANCWT (Advancing New Canadian Women in Technology) aim is to help women with technical skills in engineering accomplish their goals by providing an employment bridging program. ANCWT was established in 2016 and has collaborated with multiple employers in the engineering field. Therefore, the IEEE-WIE, Ottawa, and ANCWT have come forward and took an oath, that we will strive hard to make women gain the required knowledge and confidence to overcome this barrier and find themselves in the background of every picture. Join us on 10th August 2020, in a seminar in which Dr. Sawsan Abdul Majid, President of ANCWT accompanied by two alumni of ANCWT, Oyaje Omakwu, and Dalia Elimam will and take us through their journey with ANCWT in Canada.

Speaker Bio:

Dr. Abdul-Majid is a member of the academic community at the faculty of engineering at the University of Ottawa since 2008 as (Researcher, group manager, Part-time professor & graduate student coordinator). She holds a Ph.D. in Optical Communication Systems from Varna University, Bulgaria, and brings more than 25 years of academic (Teaching & Research) experience, as well as eight years of industrial experience and she has more than 45 publications.

Sawsan is a creator and a president of Advancing New Canadian Women in Technology (ANCWT), a Uottawa based employment bridging program. https://ancwt.ca

Her goal is to help newcomer women (immigrants & refugees) who have gained their educations in engineering, IT, and computer science from abroad find their dream jobs in Canada, and settle within the Ottawa community.

Oyaje Omakwu holds a bachelors’ degree in Mechanical Engineering from Nigeria and a masters’ degree in Engineering Management from the University of Ottawa. She has 10 years of experience in project management and business analysis.

She joined ANCWT cohort in 2018, through which she got the opportunity to work as a Project Analyst with the Dept. of Fisheries and Oceans, Canada. It is her desire to help new immigrant women learn about the ANCWT program and its benefits and she is part of the team overseeing ANCWT online activities.

Dalia Elimam, a Chemical Engineer from U.A.E with 16 years of experience in chemical analysis for drinking water pesticides and toxins in food for UAE government. She was introduced to ANCWT in 2019 through the newcomers’ program which guided her to find an entry-level position at Dept. of Fisheries and Oceans- Canada. She is now a Jr. Business Analyst at DFO and work with the client portfolio management team.

Sep
2
Wed
Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design
Sep 2 @ 11:00 – 12:00

 

IEEE Ottawa Section: MTT-S / AP-S Chapter presents:

Title: Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design

Date: September 2nd, 2020

Time: 11 AM (ET)

Register at: https://events.vtools.ieee.org/m/238482

This talk will review some recent advancements achieved on the characterization and modelling of the trapping effects felt in GaN HEMT transistors, and their impact on microwave circuit design. Because of their nowadays importance, a particular attention will be payed to applications on high power amplifiers for mobile wireless infrastructure and pulsed radar applications.

For that, the talk will start by recollecting the most common model formulations adopted for the various levels of RF engineering, from the device level (physics) to the transistor (circuit) and amplifier (system) level. Starting by the Shockley-Read-Hall capture and emission processes we will be able to understand one of the fundamental signatures of trapping effects, the significantly different charge and discharging time constants, and its impact on power amplifier nonlinear distortion behavior. Then, some widely adopted approaches of the channel current transients’ characterization are addressed and the talk concludes by presenting some illustrative cases of application to RF high power amplifiers.

Speaker: Jose C. Pedro

José C. Pedro received the Diploma, Ph.D., and Habilitation degrees in electronics and telecommunications engineering from the Universidade de Aveiro, Aveiro, Portugal, in 1985, 1993, and 2002, respectively.

He is currently a Full Professor with the Universidade de Aveiro and head of the Aveiro site of the Instituto de Telecomunicações. He has authored 2 books and authored or co-authored more than 200 papers in international journals and symposia. His current research interests include active device modelling and the analysis and design of various nonlinear microwave circuits.

Dr. Pedro was a recipient of various prizes including the 1993 Marconi Young Scientist Award, the 2000 Institution of Electrical Engineers Measurement Prize, the 2015 EuMC Best Paper Microwave Prize, and the Microwave Distinguished Educator Award. He has served the scientific community as a Reviewer and an Editor for several conferences and journals, namely, the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, for which he was the Editor-in-Chief.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.