Events

Jun
10
Wed
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION
Jun 10 @ 14:30 – 16:00
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION

Presented by the IEEE Ottawa Section MTT-S/AP-S Chapter & Young Professionals 

Accelerating 5G Design Innovation Through Simulation 

                                                                   By
Dr. Laila Salman 

                                                              Ansys Inc.

                                          Date: Wednesday, June 10, 2020

                                                Time: 2:30 PM – 4:00 PM

                                                                   Location: Online
                       

Abstract

5G connectivity is the next technological revolution. This pervasive, ultrafast compute network will connect billions of devices with data on-demand. It will drive economic expansion in many sectors, spawn new products and services, and transform our lives as we know it. Yet, before 5G can deliver on its promises and quality of service (QoS) metrics, wireless systems designers and engineers must overcome sizable challenges.  

Ansys 5G simulation solutions empower these individuals to solve the complexities impeding device, network and data center design. Ansys 5G simulation solutions provide electromagnetics, semiconductor, electronics cooling and mechanical analysis tools to accurately simulate 5G radio and related technologies. The multi-solution platform leverages high-performance computing that can be deployed across the enterprise, allowing designers and engineering experts to collaborate more effectively. 

This seminar will highlight the following 5G engineering challenges: 

·  End User Equipment  

    o   multi-frequency band antenna integration 

    o   modeling of mm-wave array antennas  

    o   RFI, EMI & Desense Mitigation 

·  Base-Station Antenna Modeling 

    o  Full Communication Analysis in Electrically Large & Complex Environment 

    o  RFI, Data Coverage & ElectroThermal Reliability 

 

Speaker Bio

Dr. Laila Salman received the B.S. and M.S. degrees in electronics and communication engineering from Cairo University, Egypt, and the PhD. Degree in electromagnetic and antenna design from the University of Mississippi. She also worked as a post-doctoral student at the Université de Quebec en Outaouais, Gatineau, Canada till 2010. Her research was on dielectric resonator antennas, wearable antennas, microwave and millimeter-wave circuits and systems, microwave imaging for early detection of breast cancer and scattering from left-handed metamaterials. Dr. Salman joined Ansys Canada Ltd. in August 2010 as a Lead Technical Services Specialist for High Frequency Applications.

Registration: Please use the link in the registration section to sign up for the event.

To join event use the following link.

Sep
2
Wed
Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design
Sep 2 @ 11:00 – 12:00

 

IEEE Ottawa Section: MTT-S / AP-S Chapter presents:

Title: Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design

Date: September 2nd, 2020

Time: 11 AM (ET)

Register at: https://events.vtools.ieee.org/m/238482

This talk will review some recent advancements achieved on the characterization and modelling of the trapping effects felt in GaN HEMT transistors, and their impact on microwave circuit design. Because of their nowadays importance, a particular attention will be payed to applications on high power amplifiers for mobile wireless infrastructure and pulsed radar applications.

For that, the talk will start by recollecting the most common model formulations adopted for the various levels of RF engineering, from the device level (physics) to the transistor (circuit) and amplifier (system) level. Starting by the Shockley-Read-Hall capture and emission processes we will be able to understand one of the fundamental signatures of trapping effects, the significantly different charge and discharging time constants, and its impact on power amplifier nonlinear distortion behavior. Then, some widely adopted approaches of the channel current transients’ characterization are addressed and the talk concludes by presenting some illustrative cases of application to RF high power amplifiers.

Speaker: Jose C. Pedro

José C. Pedro received the Diploma, Ph.D., and Habilitation degrees in electronics and telecommunications engineering from the Universidade de Aveiro, Aveiro, Portugal, in 1985, 1993, and 2002, respectively.

He is currently a Full Professor with the Universidade de Aveiro and head of the Aveiro site of the Instituto de Telecomunicações. He has authored 2 books and authored or co-authored more than 200 papers in international journals and symposia. His current research interests include active device modelling and the analysis and design of various nonlinear microwave circuits.

Dr. Pedro was a recipient of various prizes including the 1993 Marconi Young Scientist Award, the 2000 Institution of Electrical Engineers Measurement Prize, the 2015 EuMC Best Paper Microwave Prize, and the Microwave Distinguished Educator Award. He has served the scientific community as a Reviewer and an Editor for several conferences and journals, namely, the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, for which he was the Editor-in-Chief.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.