Events

Nov
24
Sun
Modern Day Applications of Power Electronics – Who Can Benefit?
Nov 24 @ 00:46 – 01:46
Modern Day Applications of Power Electronics – Who Can Benefit?

AbstractApplication of power electronics is widespread in everyday
life. Some applications are considered as “nice to have it;” in other cases,
they are essential. This presentation discusses a wide variety of daily-used
applications around the world. Also covered is an advanced topic, such as SMART
Controller that today’s grid requires for voltage regulation, power factor
regulation, unbalance voltage/current regulation, harmonic elimination and so
on. A SMART Controller that is based on functional requirements and
cost-effective solutions is derived from utilizing the best features of all the
technical concepts that are developed until now. Final year students of
electrical engineering undergraduate curriculum, post graduate students,
researchers, academicians and utility engineers will benefit from attending
this course. The participants will hear from an expert who actually designed
and commissioned a few utility-grade SMART controllers since their inception in
the 1990s.

 

Speaker’s
Bio

Kalyan Sen, a
Fulbright Scholar, is the Chief Technology Officer of Sen Engineering
Solutions, Inc. (
www.sentransformer.com) that specializes in
developing SMART power flow controllers—a functional requirements-based and
cost-effective solution. He
received
BEE,
MSEE, and PhD degrees, all in Electrical Engineering, from Jadavpur University,
India, Tuskegee University, USA, and Worcester Polytechnic Institute, USA,
respectively. He also received an MBA from Robert Morris University, USA.

 

Dr.
Sen spent more than 30 years in academia and industry and became a Westinghouse
Fellow Engineer. He was a key member of the Flexible Alternating Current
Transmission Systems (FACTS) development team at the Westinghouse Science &
Technology Center in Pittsburgh. He contributed in all aspects (conception,
simulation, design, and commissioning) of FACTS projects at Westinghouse. He
conceived some of the basic concepts in FACTS technology. He has authored or
coauthored more than 25 peer-reviewed publications, 8 issued patents, a book
and 4 book chapters in the areas of FACTS and power electronics. He is the
coauthor of the book titled, Introduction
to FACTS Controllers: Theory, Modeling, and Applications
, IEEE Press and
John Wiley & Sons, Inc. 2009, which is also published in Chinese and Indian
paperback editions. He is the co-inventor of Sen Transformer.

Sep
2
Wed
Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design
Sep 2 @ 11:00 – 12:00

 

IEEE Ottawa Section: MTT-S / AP-S Chapter presents:

Title: Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design

Date: September 2nd, 2020

Time: 11 AM (ET)

Register at: https://events.vtools.ieee.org/m/238482

This talk will review some recent advancements achieved on the characterization and modelling of the trapping effects felt in GaN HEMT transistors, and their impact on microwave circuit design. Because of their nowadays importance, a particular attention will be payed to applications on high power amplifiers for mobile wireless infrastructure and pulsed radar applications.

For that, the talk will start by recollecting the most common model formulations adopted for the various levels of RF engineering, from the device level (physics) to the transistor (circuit) and amplifier (system) level. Starting by the Shockley-Read-Hall capture and emission processes we will be able to understand one of the fundamental signatures of trapping effects, the significantly different charge and discharging time constants, and its impact on power amplifier nonlinear distortion behavior. Then, some widely adopted approaches of the channel current transients’ characterization are addressed and the talk concludes by presenting some illustrative cases of application to RF high power amplifiers.

Speaker: Jose C. Pedro

José C. Pedro received the Diploma, Ph.D., and Habilitation degrees in electronics and telecommunications engineering from the Universidade de Aveiro, Aveiro, Portugal, in 1985, 1993, and 2002, respectively.

He is currently a Full Professor with the Universidade de Aveiro and head of the Aveiro site of the Instituto de Telecomunicações. He has authored 2 books and authored or co-authored more than 200 papers in international journals and symposia. His current research interests include active device modelling and the analysis and design of various nonlinear microwave circuits.

Dr. Pedro was a recipient of various prizes including the 1993 Marconi Young Scientist Award, the 2000 Institution of Electrical Engineers Measurement Prize, the 2015 EuMC Best Paper Microwave Prize, and the Microwave Distinguished Educator Award. He has served the scientific community as a Reviewer and an Editor for several conferences and journals, namely, the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, for which he was the Editor-in-Chief.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.