Events

Nov
28
Thu
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College
Nov 28 @ 18:00 – 20:00
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College | Ottawa | Ontario | Canada

Seminar by IEEE Ottawa Section, PELS, SSIT, RS-PEL, PES, Education Activities, Algonquin College IEEE Student Branch, ComSoc, CESoc, and BTS Ottawa Joint Chapter.

The IEEE Ottawa Section is inviting all interested IEEE members and nonmembers to a seminar

Modern Day Applications of Power Electronics – Who Can Benefit?

By 

Kalyan K. Sen

Sen Engineering Solutions, Inc.

DATE:

November 28th 2019

TIME:
Refreshments, Registration and Networking:
18:00;
Seminar:
18:30 – 20:00.

PLACE:
Algonquin College, Room P208, 1385 Woodroffe Ave., Ottawa.

PARKING:

Parking in Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a
machine and display the ticket on your dashboard.

 

ADMISSION:

Free. Registration required.

Please register by e-mail contacting: ottawapels@gmail.com

 

Abstract:

Application of power electronics is widespread in everyday life. Some applications are considered as “nice to have it;” in other cases, they are essential. This presentation discusses a wide variety of daily-used applications around the world. Also covered is an advanced topic, such as SMART Controller that today’s grid requires for voltage regulation, power factor regulation, unbalance voltage/current regulation, harmonic elimination and so on. A SMART Controller that is based on functional requirements and cost-effective solutions is derived from utilizing the best features of all the technical concepts that are developed until now. Final year students of electrical engineering undergraduate curriculum, post graduate students, researchers, academicians and utility engineers will benefit from attending this course. The participantswill hear from an expert who actually designed and commissioned a fewutility-grade SMART controllers since their inception in the 1990s.

 

Modern Day Applications of Power Electronics – Who Can Benefit
Dec
3
Tue
Advanced semiconductor lasers: Ultra-low operating energy and heterogeneous integration with Si photonics devices @ University of Ottawa, Room 223
Dec 3 @ 13:00 – 14:00

IEEE Photonics Society Distinguished Lecturer Program

Advanced semiconductor lasers:Ultra-low operating energy and heterogeneous integration with Si photonics devices

Shinji Matsuo, NTT Photonics Laboratories, Japan

Abstract: The electrical power consumed in data transmission systems is now hampering efforts to further increase the speed and capacity at various scales, ranging from data centers to microprocessors. Optical interconnects employing an ultralow energy directly modulated lasers will play a key role in reducing the power consumption. Since a laser’s operating energy is proportional to the size of its active volume, developing high-performance lasers with a small cavity is important. For this purpose, we have developed membrane DFB and photonic crystal (PhC) lasers, in which active regions are buried with InP layer. Thanks to the reduction of cavity size and the increase in optical confinement factor, we have achieved extremely small operating energy and demonstrated 4.4-fJ/bit operating energy by employing wavelength-scale PhC cavity. Reduction of the cost is also important issue because huge number of transmitters are required for short distance optical links. For this purpose, Si photonics technology is expected to be a potential solution because it can provide large-scale phonic integrated circuits (PICs), which can reduce the assembly cost compared with transmitters constructed by discrete devices. Therefore, heterogeneous integration of III-V compound semiconductors and Si has attracted much attention. For fabricating these devices, we have developed wafer-scale fabrication procedure that employs regrowth of III-V compound semiconductors on directly bonded thin InP template on SiO2/Si substrate. A key to realize high-quality epitaxial layer is total thickness, which must be below the critical thickness, typically 430 nm. Thus, membrane structure is quite suitable for heterogeneous integration. I will talk about our recent progress, focusing on ultralow-powerconsumption directly modulated lasers and their photonic integrated circuit. I will also describe progress in heterogeneous integration of these lasers and Si photonics devices.

Bio: Dr. Matsuo received a B.E. and M.E. degrees in electrical engineering from Hiroshima University, Hiroshima, Japan, in 1986 and 1988, and the Ph.D. degree in electronics and applied physics from Tokyo Institute of Technology, Tokyo, Japan, in 2008. In 1988, he joined NTT Optoelectronics Laboratories, Atsugi, where he was engaged in research on photonic functional devices using MQW-pin modulators and VCSELs. In 1997, he researched optical networks using WDM technologies at NTT Network Innovation Laboratories, Yokosuka. Since 2000, he has been researching InP-based photonic integrated circuits including fast tunable lasers and photonic crystal lasers at NTT Photonics Laboratories, Atsugi. Dr. Matsuo is a member of the IEEE Photonics Society, Japan Society of Applied Physics and the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan.

Feb
27
Thu
Clarifying the Path to becoming a P.Eng. with Representatives from Professional Engineers Ontario
Feb 27 @ 18:00 – 19:30
Clarifying the Path to becoming a P.Eng. with Representatives from Professional Engineers Ontario

A joint event by IEEE YP & WIE Ottawa!

REGISTER NOW: https://forms.gle/ymzcQyp24vNJhx8K8

WHO? Representatives from Professional Engineers Ontario
WHAT? Clarifying the Path to becoming a P.Eng.

If
you are an engineering undergraduate or post-graduate student, or a
recent graduate starting out your engineering career, then this seminar
might be for you. In it you will learn:

  • What is PEO?
  • What engineering experience is PEO looking for once I graduate?
  • I have international engineering education and experience; how is that evaluated by PEO?
  • How is my engineering experience evaluated by PEO?
  • How do I prepare my Experience Record?
  • What is the PPE?
  • What is the EIT Program and the Student Membership program?

WHERE?
Carleton University,
Minto Centre (MC) 5050
Paid Parking Available – carleton.ca/parking/parking-map/

WHEN?
Thursday, February 27th, 2020
6:00PM to 7:30PM

Free for all – You MUST pre-register!
REGISTER NOW: https://forms.gle/ymzcQyp24vNJhx8K8

Mar
17
Tue
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129
Mar 17 @ 18:00 – 19:30
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129 | Ottawa | Ontario | Canada

NOTE: This event has been cancelled due to COVID-19 precautions

Dear colleagues,

Due to the current situation regarding corrona virus COVID-19, we have to CANCEL our IEEE Ottawa Section Seminar:

“Microgrid Stability Definitions, Analysis, and Modeling”
by Dr. Mostafa Farrokhabadi,
which was scheduled for Tuesday, Mar. 17, 2020, 6:00 p.m., at Algonquin College, 1385 Woodroffe Ave., T-Building, Room T129.

The new date and time for this seminar will be determined and announced when the circumstances allow.

We are sorry for the inconvenience and thank you for your understanding.

Sincerely,

Branislav Djokic

 

TITLE: Microgrid Stability Definitions, Analysis, and Modeling

SPEAKER: Dr. Mostafa Farrokhabadi, Director of Technology at BluWave-ai, Ottawa

DATE:     Tuesday, March 17, 2020.

TIME:     Refreshments, Registration and Networking: 6:00 p.m.; Seminar: 6:30 p.m. – 7:30 p.m.

LOCATION: Ciena Optophotonics Lab, Room T129, T-Building, School of Advanced Technology, Algonquin College, 1385 Woodroffe Ave., Ottawa, ON Canada K2G 1V8.

PARKING: Parking at Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a machine and display the ticket on your dashboard. Please respect restricted areas.

Abstract: A microgrid is defined as a group of Distributed Energy Resources (DERs) and loads that act locally as a single controllable entity and can operate in both grid-connected and islanded modes. Microgrids are considered a critical link in the evolution from vertically integrated bulk power systems to smart decentralized networks, by facilitating the integration of DERs. Entities, such as government agencies, utilities, military bases, and universities around the world are deploying microgrids, and an increasing number of these systems are expected to be developed in the next decade. In general, stability in microgrids has been treated from the perspective of conventional bulk power systems. However, the nature of the stability problem and dynamic performance of a microgrid are considerably different than those of a conventional power system due to intrinsic differences between microgrids and bulk power systems, such as size, feeder types, high share of Renewable Energy Sources (RES), converter-interfaced components, low inertia, measurement devices such as Phase-Locked Loop (PLL), unbalanced operation, etc.

This seminar discusses the findings of the award-winning IEEE PES Task Force on Microgrid Stability Definitions, Analysis, and Modeling, which defines concepts and identifies relevant issues related to stability in microgrids. The seminar presents definitions and classification of microgrid stability, considering pertinent microgrid features such as voltage-frequency dependence, unbalancing, low inertia, and generation intermittency. A few examples will be also presented, highlighting some of the stability classes discussed during the seminar.

Speaker’s Bio: Dr. Mostafa Farrokhabadi is the Senior Director of Technology at BluWave-ai, an internationally award-winning startup offering AI-enabled control and optimization solutions for smart grids. He has more than 8 years of experience in designing mission critical grid solutions for industry and academia, including technical leadership of a $6M international consortium in Electric Grid Modernization, and Smart Grid projects with Hatch and Canadian Solar. Mostafa has authored/co-authored several high-impact technical papers and patents on intelligent control and optimization of renewable-penetrated grids.

Mostafa obtained his PhD in Electrical and Computer Engineering from the University of Waterloo. He has also studied and performed research in Sweden at KTH and Germany at KIT. During the course of his career, Mostafa has received multiple business, research, and teaching awards, including the prestigious University of Waterloo Doctoral Thesis Completion Award and Ottawa’s Forty Under 40.

Mostafa has also led the award-winning IEEE Power and Energy Society Task Force on microgrid stability, an international coalition of 21 researchers from 14 institutions investigating stability issues in microgrids. Currently, he serves as an Associate Editor of the IEEE Transactions on Smart Grid.

Admission: Free. Registration required. Please register by e-mail contacting: ajit.pardasani@ieee.org or branislav@ieee.org.

 

IEEE_MFarrokhabadi_Seminar_Flyer_17Mar2020
May
21
Thu
IEEE CANADA TECHNOLOGY LEADERSHIP WEBINAR SERIES – II
May 21 @ 14:00 – 15:00

Speaker: Suzanne
Grant of Canadian Advanced Technology Alliance

Topic: #TechnologyNorth – the gold standard

Suzanne envisions a world where a Made in Canada #TechnologyNorth seal is the global gold standard of quality, synonymous with leather shoes Made in Italy, grapes harvested in Champagne, and autos designed and manufactured in Germany. Canada’s world class innovators have delivered excellence decade over decade. Without adequate support of the sector through COVID19, this vision may be a non-starter. During economic difficulties Canada has traditionally bailed out traditional auto and airline industries, and innovative technologies like the AVRO Arrow, Nortel, Research In Motion, Cognos and aspiring young companies were orphaned. By failing to protect our  innovators, Canada traded in future traction of Canada’s valuable intellectual property. America, Europe and the Middle East hungry to prosper from our bargain IP and talent came out the winners. Each downturn has taken at least a decade for technology to reinvent itself and rebound.

We have a track record of great beginnings and a more mature Canada can weather the storms and aim for bigger commercial finish lines, where prosperity and job abundance translate to big returns. Before COVID19 struck, we were hitting our stride with record venture investments and sought after talent from leading education institutions. Canada’s Innovation Agenda demonstrated a maturing future view aiming to lead. This is no time to retreat! The government has invested on behalf of Canadians and accountable for a $36B year over year injection into innovation via universities and commercialization. This investment is at risk. Toronto was the fastest growing tech hub in North America with ICT and advanced technologies outpacing job and economic growth rates by almost twice the national average. As we look beyond COVID19, our technology sector, adequately supported through this crisis, can be the catalyst to jump start Canada’s future economy. With a troubled oil and gas sector, Canada will need agile, fast movers doing the heavy lifting to fund our social, health and education programs and rebuild the nation’s balance sheet.

And as we get back to shipping products and services, a more sophisticated approach to sales, branding, advocacy and public relations, layered with Canada’s science, technology, engineering and maths genius can place Canada out in front in multiple lanes. The digitization revolution just got a bump up and opportunities and demand will remain for trillion dollar market frontiers. Data, Internet of things and machine learning are golden.  Demand for artificial intelligence, environmental, medical and space solutions will continue to accelerate. Winning the future will take more collaboration, agility, commercial savvy and embracing diverse talent sets and creativity. We’ve got this Canada!

About The Canadian Advanced Technology Alliance
CATA is a trusted industry alliance with a mandate to help Canadian innovation thrive. They focus on commercial capabilities and market access for Canadian HQ small and medium technology businesses. The alliance brings together industry thought leaders with academe and policy makers to advocate for Canadian competitiveness. CATA amplifies a bold, confident podium culture amongst Canadian innovators. CATA recently proposed $3.6B in COVID emergency relief – the Resilience and Rebound Fund for tech small and medium companies.
CATA is home to the National Innovation Leadership Council, and a joint body with the Canadian Association of Chiefs of Police – the CACP/CATA E-Crimes Cyber Council. CATA is launching a President’s Council this Fall

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.