Events

May
8
Wed
4th Annual ANSYS Innovation Conference @ Brook Street Hotel
May 8 @ 09:00 – 15:00
4th Annual ANSYS Innovation Conference @ Brook Street Hotel | Ottawa | Ontario | Canada

Innovation enables organizations to open new avenues of product differentiation by customizing products. In today’s rapidly changing business environment, engineers must innovate quickly to incorporate new features while reducing development costs and delivering new products to the market before the competition. Simulation plays a key role in helping engineers drive innovation, enabling complete virtual prototypes of complex systems to be validated across all physics and engineering disciplines.

Join us as we return to Ottawa for our 4th Annual ANSYS Innovation Conference on May 8, 2019! This one-day conference will provide detailed insight into how leading companies are utilizing simulation to advance their product development. We will bring together ANSYS users, partners, developers, and industry experts for networking, learning, and sharing of new ideas.

View Agenda

What You Will Learn

  • Experience new simulation capabilities that provide unprecedented design insight as they speed your time to market
  • Incorporate various productivity enhancement tools and techniques into your engineering department’s workflow
  • Gain insights into 5G system development with physics-based simulation and cover critical design issues, such as antenna performance, semiconductor reliability, and thermal integrity
  • Identify signal integrity issues early in the design cycle for electronics IC packages, PCBs, connectors and other complex interconnects
  • Modify antenna design, predict antenna efficiency and the overall thermal and EM performance of the product based on electromagnetic and thermal coupling solutions

 

Jul
17
Wed
An Evening with Power Integrity Experts @ Fidus Systems, Ottawa
Jul 17 @ 17:00 – 19:30

Speaker 1: Hisham Abed, P.Eng., Ericsson

Topic: Power Integrity – Best design practices

Speaker 2: Dr. Ihsan Erdin, Celestica

Topic: Power Integrity Optimization amidst MLCC shortage

Parking: Free

Registration:  Free, and is on a first to reply basis. Preference given to IEEE EMC and CPMT society members. Seating is limited. E-mail reservation is required.

Pizza and soft drinks will be served.

Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa
EMC chapter

Syed.Bokhari@fidus.com,

Office :(613) 595 – 0507 Ext. 377, Cell: (613) 355 – 6632

 

Directions:    www.fidus.com

Oct
22
Tue
The Lightning Phenomenon @ 4124-ME (Meckenzie Building), Carleton University
Oct 22 @ 12:00 – 13:00

IEEE  Distinguished Lecturer Presentation hosted jointly by the IEEE Ottawa EMC and CASS/SSCS/EDS Chapters:

 

Speaker  :     Dr. Marcos Rubinstein, Professor, University of Applied Sciences of Western Switzerland

Topic    :     The Lightning Phenomenon

Date     :     Tuesday October 22, 2019

Time     :     12(noon) – 1pm

Location :     4124-ME (Meckenzie Building), Carleton University, 1125 Colonel By Drive, Ottawa – K1S5B6

 

Registration:  Free, Please E-mail Ram Achar (achar@doe.carleton.ca)

Refreshments: Served

 

Parking  : Payment based Metered Parking spots in the campus

 

Organizers:

               Ram Achar, Dept. of Electronics, Carleton University

               Chairman CASS/SSCS/EDS Chapters

               achar@doe.carleton.ca

               Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter

 

Abstract

Lightning is one of the primary causes of damage and malfunction of telecommunication and power networks and one of the leading causes of weather-related deaths and injuries.

Lightning is composed of numerous physical processes, of which only a few are visible to the naked eye.

This lecture presents various aspects of the lightning phenomenon, its main processes and the technologies that have been developed to assess the parameters that are important for engineering and scientific applications. These parameters include the channel-base current and its associated electromagnetic fields.

The measurement techniques for these parameters are intrinsically difficult due to the randomness of the phenomenon and to the harsh electromagnetic environment created by the lightning itself.

Besides the measurement of the lightning parameters, warning and insurance applications require the real-time detection and location of the lightning strike point. The main classical and emerging lightning detection and location techniques, including those used in currently available commercial lightning location systems will be described in the lecture. The newly proposed Electromagnetic Time Reversal technique, which has the potential to revolutionize lightning location will also be presented.

 

Biography

Marcos Rubinstein received the Master’s and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville.

In the decade of the 1990’s, he worked as a research engineer at the Swiss Federal Institute of Technology, Lausanne and as a program manager at Swisscom in the areas of electromagnetic compatibility and lightning. Since 2001, he is a professor at the University of Applied Sciences of Western Switzerland HES-SO, Yverdon-les-Bains, where he is currently responsible for the advanced Communication Technologies Group. He is the author or coauthor of 300 scientific publications in reviewed journals and international conferences. He is also the coauthor of nine book chapters and the co-editor of a book on time reversal. He served as the Editor-in-Chief of the Open Atmospheric Science Journal, and currently serves as an Associate Editor of the IEEE Transactions on EMC.

Prof. Rubinstein received the best Master’s Thesis award from the University of Florida, the IEEE achievement award and he is a co-recipient of the NASA’s Recognition for Innovative Technological Work award. He also received the ICLP Karl Berger award. He is a Fellow of the IEEE and an EMP Fellow, a member of the Swiss Academy of Sciences and of the International Union of Radio Science.

May
14
Thu
Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S
May 14 @ 12:00 – 13:00

Presented by IEEE MTT-S Distinguished Microwave Lecturer (DML) Talks:

Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S

By
Dr. Payam Heydari
University of California, Irvine

Date: Thursday, May 14 , 2020

Time: 12:00 PM – 1 PM

Abstract:

The ongoing super-linear growth of world’s population coupled with the worldwide access to internet and the general public’s tendency to use more bandwidth-intensive applications fuel the urgency to enhance wireless infrastructures so as to meet these demands. Consequently, the wireless R&D is headed towards the inception of “Beyond-5G” (e.g., 6G) technology.  This webinar provides a comprehensive overview of challenges and opportunities in designing beyond-5G transceiver architectures capable of achieving high data rates above and beyond 20 Gbps. 

                                                                 Speaker Bio:

Payam Heydari received his Ph.D. degree from the University of Southern California in 2001. He is currently a Full Professor of Electrical Engineering at the University of California, Irvine. Dr. Heydari’s research covers the design of terahertz/millimeter-wave/RF and analog integrated circuits. He is the (co)-author of two books, one book chapter, and more than 150 journal and conference papers. 

Dr. Heydari is an AdCom member of the IEEE Solid-State Circuits Society. Dr. Heydari currently serves an Associate Editor for the IEEE Journal of Solid-State Circuits and the IEEE Solid-State Circuits Letters. He was a member of the Technical Program Committee of the International Solid-State Circuits Conference (ISSCC). Dr. Heydari is an IEEE Fellow for contributions to silicon-based millimeter-wave integrated circuits and systems.

 

                Event is free, but space is limited.  All participants must register in advance. For                                                  Registration: please use the following link



Jun
10
Wed
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION
Jun 10 @ 14:30 – 16:00
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION

Presented by the IEEE Ottawa Section MTT-S/AP-S Chapter & Young Professionals 

Accelerating 5G Design Innovation Through Simulation 

                                                                   By
Dr. Laila Salman 

                                                              Ansys Inc.

                                          Date: Wednesday, June 10, 2020

                                                Time: 2:30 PM – 4:00 PM

                                                                   Location: Online
                       

Abstract

5G connectivity is the next technological revolution. This pervasive, ultrafast compute network will connect billions of devices with data on-demand. It will drive economic expansion in many sectors, spawn new products and services, and transform our lives as we know it. Yet, before 5G can deliver on its promises and quality of service (QoS) metrics, wireless systems designers and engineers must overcome sizable challenges.  

Ansys 5G simulation solutions empower these individuals to solve the complexities impeding device, network and data center design. Ansys 5G simulation solutions provide electromagnetics, semiconductor, electronics cooling and mechanical analysis tools to accurately simulate 5G radio and related technologies. The multi-solution platform leverages high-performance computing that can be deployed across the enterprise, allowing designers and engineering experts to collaborate more effectively. 

This seminar will highlight the following 5G engineering challenges: 

·  End User Equipment  

    o   multi-frequency band antenna integration 

    o   modeling of mm-wave array antennas  

    o   RFI, EMI & Desense Mitigation 

·  Base-Station Antenna Modeling 

    o  Full Communication Analysis in Electrically Large & Complex Environment 

    o  RFI, Data Coverage & ElectroThermal Reliability 

 

Speaker Bio

Dr. Laila Salman received the B.S. and M.S. degrees in electronics and communication engineering from Cairo University, Egypt, and the PhD. Degree in electromagnetic and antenna design from the University of Mississippi. She also worked as a post-doctoral student at the Université de Quebec en Outaouais, Gatineau, Canada till 2010. Her research was on dielectric resonator antennas, wearable antennas, microwave and millimeter-wave circuits and systems, microwave imaging for early detection of breast cancer and scattering from left-handed metamaterials. Dr. Salman joined Ansys Canada Ltd. in August 2010 as a Lead Technical Services Specialist for High Frequency Applications.

RegistrationPlease use the link in the registration section to sign up for the event.

To join event use the following link.

Careers

Publications

Join IEEE or a Society

Member Services

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.