Events

Jun
2
Sun
IEEE Ottawa Robotics Competition 2019 @ Earl of March Secondary School
Jun 2 @ 08:00 – 17:00

Arduinos, 3D printing, Lego Mindstorms and displays, submarine
robots, and AI, where can you find all this? All of this and MUCH MORE will be at the IEEE Ottawa Robotics
Competition (ORC), Ottawa’s largest robotics competition for grade 5 to 12
students. The ORC is taking place on Sunday,
June 2nd
at Earl of March
Secondary School
. Best times to show up are between 10:30 am to 12:30 pm and 1:30 pm to 4 pm. The ORC is completely
open to the public, so invite your friends and family too!

Check out previous competitions at https://youtube.com/user/ieeeorc/videos.

If you have any questions, please feel free to email us at orcinfo@ieeeottawa.ca.

Jul
17
Wed
An Evening with Power Integrity Experts @ Fidus Systems, Ottawa
Jul 17 @ 17:00 – 19:30

Speaker 1: Hisham Abed, P.Eng., Ericsson

Topic: Power Integrity – Best design practices

Speaker 2: Dr. Ihsan Erdin, Celestica

Topic: Power Integrity Optimization amidst MLCC shortage

Parking: Free

Registration:  Free, and is on a first to reply basis. Preference given to IEEE EMC and CPMT society members. Seating is limited. E-mail reservation is required.

Pizza and soft drinks will be served.

Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa
EMC chapter

Syed.Bokhari@fidus.com,

Office :(613) 595 – 0507 Ext. 377, Cell: (613) 355 – 6632

 

Directions:    www.fidus.com

Oct
22
Tue
The Lightning Phenomenon @ 4124-ME (Meckenzie Building), Carleton University
Oct 22 @ 12:00 – 13:00

IEEE  Distinguished Lecturer Presentation hosted jointly by the IEEE Ottawa EMC and CASS/SSCS/EDS Chapters:

 

Speaker  :     Dr. Marcos Rubinstein, Professor, University of Applied Sciences of Western Switzerland

Topic    :     The Lightning Phenomenon

Date     :     Tuesday October 22, 2019

Time     :     12(noon) – 1pm

Location :     4124-ME (Meckenzie Building), Carleton University, 1125 Colonel By Drive, Ottawa – K1S5B6

 

Registration:  Free, Please E-mail Ram Achar (achar@doe.carleton.ca)

Refreshments: Served

 

Parking  : Payment based Metered Parking spots in the campus

 

Organizers:

               Ram Achar, Dept. of Electronics, Carleton University

               Chairman CASS/SSCS/EDS Chapters

               achar@doe.carleton.ca

               Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter

 

Abstract

Lightning is one of the primary causes of damage and malfunction of telecommunication and power networks and one of the leading causes of weather-related deaths and injuries.

Lightning is composed of numerous physical processes, of which only a few are visible to the naked eye.

This lecture presents various aspects of the lightning phenomenon, its main processes and the technologies that have been developed to assess the parameters that are important for engineering and scientific applications. These parameters include the channel-base current and its associated electromagnetic fields.

The measurement techniques for these parameters are intrinsically difficult due to the randomness of the phenomenon and to the harsh electromagnetic environment created by the lightning itself.

Besides the measurement of the lightning parameters, warning and insurance applications require the real-time detection and location of the lightning strike point. The main classical and emerging lightning detection and location techniques, including those used in currently available commercial lightning location systems will be described in the lecture. The newly proposed Electromagnetic Time Reversal technique, which has the potential to revolutionize lightning location will also be presented.

 

Biography

Marcos Rubinstein received the Master’s and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville.

In the decade of the 1990’s, he worked as a research engineer at the Swiss Federal Institute of Technology, Lausanne and as a program manager at Swisscom in the areas of electromagnetic compatibility and lightning. Since 2001, he is a professor at the University of Applied Sciences of Western Switzerland HES-SO, Yverdon-les-Bains, where he is currently responsible for the advanced Communication Technologies Group. He is the author or coauthor of 300 scientific publications in reviewed journals and international conferences. He is also the coauthor of nine book chapters and the co-editor of a book on time reversal. He served as the Editor-in-Chief of the Open Atmospheric Science Journal, and currently serves as an Associate Editor of the IEEE Transactions on EMC.

Prof. Rubinstein received the best Master’s Thesis award from the University of Florida, the IEEE achievement award and he is a co-recipient of the NASA’s Recognition for Innovative Technological Work award. He also received the ICLP Karl Berger award. He is a Fellow of the IEEE and an EMP Fellow, a member of the Swiss Academy of Sciences and of the International Union of Radio Science.

Sep
16
Wed
Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication Applications
Sep 16 @ 17:00 – 18:00
Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication                Applications

IEEE Distinguished Lecturer Presentation hosted jointly by the OTTAWA EMC/CPMT/ED/CAS/SSCS/AP/MTT Chapters:

Speaker : Dr. Xiaoxiong Gu, IBM T.J. Watson Research Center, NY
Topic : Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication Applications
Date : Wednesday September 16, 2020
Time : 5:00 PM to 6:00 PM EST
Location : Online via ZOOM
Registration: Free, and is on a first to reply basis. Preference given to IEEE EMC CPMT/ED/CAS/SSCS/APS/MTT society members. E-mail Reservation is required.

Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter
Syed.Bokhari@fidus.com,
Office :(613) 595 – 0507 Ext. 377, Cell: (613) 355 – 6632

Abstract: Co-design and integration of RFIC, package, and antennas are critical to enable multiple aspects of 5G communications (backhaul, last mile, mobile access) and are particularly challenging at mmWave frequencies. This talk will cover various important aspects of mmWave antenna module packaging and integration for base station, backhaul, and user equipment applications, respectively, with particular emphasis on signal, power and EMC integrity. We will first present a historical perspective on Si-based mmWave modules and approaches for antenna and IC integration including trade-offs. We will focus on the challenges, implementation, and characterization of a 28-GHz phased-array module with 64 dual polarized antennas for 5G base station applications. Second, we will present a W-band phased-array module with 64-element dual-polarization antennas for radar imaging and backhaul application. The module consists of a multilayer
organic chip-carrier package and a 16-element phased-array TX IC or a 32- element RX IC chipset. Third, we will describe a compact, low-power, 60-GHz switched-beam transceiver module suitable for handset integration incorporating four antennas that support both normal and end-fire directions for a wide link spatial coverage. Detailed signal, power and EMC modeling and analysis of the modules and the system are presented.

Speaker Bio:

Xiaoxiong Gu received the Ph.D. in electrical engineering from the University of Washington, Seattle, USA, in 2006. He joined IBM Research as a Research Staff Member in January 2007. His research activities are focused on 5G radio access technologies, optoelectronic and mm-wave packaging, electrical designs, modeling and characterization of communication, imaging radar and computation systems. He has recently worked on antenna-in-package design and integration for mm-wave imaging and communication systems including Ka-band, V-band and Wband phased-array modules. He has also worked on 3D electrical packaging and signal/power integrity analysis for high-speed I/O subsystems including onchip and off-chip interconnects. He has been involved in developing novel TSV
and interposer technologies for heterogeneous system integration.

Dr. Gu has authored over 90 peer-reviewed publications, 2 book chapters and holds 9 issued patents. He was a co-recipient of IEEE ISSCC 2017 Lewis Winner Award for Outstanding Paper and IEEE JSSC 2017 Best Paper Award (the world’s first reported silicon-based 5G mmWave phased array antenna module operating at 28GHz). He was a co-recipient of the 2017 Pat Goldberg Memorial Award to
the best paper in computer science, electrical engineering, and mathematics published by IBM Research. He received IBM Outstanding Research Accomplishment in 2019 and Outstanding Technical Achievement Award in 2016, four IBM Plateau Invention Awards in 2012 ~ 2016, the IEEE EMC Symposium Best Paper Award in 2013, two SRC Mahboob Khan Outstanding Industry Liaison Awards in 2012 and
2014, the Best Conference Paper Award at IEEE EPEPS in 2011, IEC DesignCon Paper Awards in 2008 and 2010, the Best Interactive Session Paper Award at IEEE DATE in 2008, and the Best Session Paper Award at IEEE ECTC in 2007. Dr. Gu is the co-chair of Professional Interest Community (PIC) on Computer System Designs at IBM. He is a Senior Member of IEEE and has been serving on different
program committees for MTT-S, EPEPS, ECTC, EDAPS and DesignCon. Dr. Gu was the General Chair of IEEE EPEPS 2018 in San Jose, CA. He is also a Distinguished Lecturer for IEEE EMC Society in 2019-2020 and is currently an Associate Editor for IEEE Transactions on Component, Packaging and Manufacturing Technology.

Sep
26
Sat
WIE HACK613: The Ottawa Hackathon
Sep 26 @ 14:00 – 17:00

 

Date and Place: The event will be held online on September 26th and 27th, 2020.

“Every accomplishment starts with the decision to try” ~ John F. Kennedy

What?
New to Hackathons? Are you also interested in participating in IEEEXtreme 14.0? IEEE WIE Ottawa presents the first ever Mock Hackathon in Ottawa! Win Exciting Prizes and get experience with us. No need to think of an idea! The questions will be given to you. Our mentors will further help you to get a head start in your hackathon journey! This is a practice event just for you! Learn more about IEEEXtreme here-> https://ieeextreme.org/

When?
September 26th and 27th, 2020

Where?
The event is fully online including the mentorship*.

Agenda
September 26th, 2020
01:00 PM The opening ceremony

02:00 PM Commencement of Hackathon

05:00 PM Final Submission

September 27th, 2020
01:00 PM Results declaration webinar

01:30 PM Prize announcement

02:00 PM The closing ceremony

For More Details Visit: https://wie.ieeeottawa.ca/hack613-the-ottawa-hackathon/

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.