FIELDS CENTRE OF QUANTITATIVE MODELLING AND ANALYSIS: WORKSHOP ON Machine Learning in the Presence of Class Imbalance @ Residence Commons, Carleton University
Jun 21 @ 08:30 – 16:30
FIELDS CENTRE OF QUANTITATIVE MODELLING AND ANALYSIS: WORKSHOP ON Machine Learning in the Presence of Class Imbalance @ Residence Commons, Carleton University | Ottawa | Ontario | Canada


8:30 am – 9:00 am Registration
9:00 am – 9:15 am Opening Remarks Rafik Goubran Carleton University
9:15 am – 10:00 am Keynote Presentation:

Data Mining and Machine Learning for Authorship and Malware Analyses

Benjamin C. M. Fung
McGill University
10:00 am – 10:30 am Break
10:30 am – 11:45 am Cybersecurity: Top 5 class imbalance ML challenges and data sets
Stephan Jou
Class Imbalance in Fraud Detection
Robin Grosset
MindBridge Analytics Inc.
Handling class imbalance in natural language processing
Isuru Gunasekara
IMRSV Data Labs
11:45 am – 12:45 pm Lunch
12:30 pm – 2:10 pm Adaptive learning with class imbalanced streams
Herna L. Viktor
University of Ottawa
Radar-based fall monitoring using deep learning
Hamidreza Sadreazami
McGill University
Privacy-preserving data augmentation in medical text analysis
Isar Nejadgholi
National Research Council
Failure modelling of a propulsion subsystem: unsupervised and semi-supervised approaches to anomaly detection
Julio J. Valdés
National Research Council
2:10 pm – 2:25 pm Break
2:25 pm – 3:40 pm TBD Reddy Nellipudi DB Schenker Hierarchical Sentence Classification in Unstructured Audit Reports
Daniel Shapiro
Deep Learning techniques for unsupervised anomaly detection
Dušan Sovilj
RANK Software Inc.
3:40 pm – 3:50 pm Closing Remarks


An Evening with Power Integrity Experts @ Fidus Systems, Ottawa
Jul 17 @ 17:00 – 19:30

Speaker 1: Hisham Abed, P.Eng., Ericsson

Topic: Power Integrity – Best design practices

Speaker 2: Dr. Ihsan Erdin, Celestica

Topic: Power Integrity Optimization amidst MLCC shortage

Parking: Free

Registration:  Free, and is on a first to reply basis. Preference given to IEEE EMC and CPMT society members. Seating is limited. E-mail reservation is required.

Pizza and soft drinks will be served.

Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa
EMC chapter,

Office :(613) 595 – 0507 Ext. 377, Cell: (613) 355 – 6632



GNSS Antennas for Autonomous Vehicles: What You Need to Know! @ 4359 Mackenzie Building, Carleton University
Jul 17 @ 18:00 – 19:00

Antennas for Autonomous Vehicles:

What You Need to Know!


and reliable positioning recently became a critical property of autonomous
vehicles like drones, driverless cars and more. Tallysman Wireless will explain
why the GNSS antenna is the most important component for accurate positioning
and will present the challenges of selecting the appropriate GNSS antenna for
diverse types of autonomous vehicles. Multiple properties of a GNSS antenna
like its phase center variation, ability to reject interferences or multipath
and sensibility to its environment will be analysed and guide lines will be


Refreshments will be served!

Location: 4359 Mackenzie Building, Carleton University.


Time: 6:00 – 7:00 PM

Date: July 17th , 2019



Hautcoeur received the M.Sc. degree in radio communication systems and
electronics from the Ecole Polytechnique of the University of Nantes, Nantes,
France, in 2007 and the Ph.D. degree in signal processing and
telecommunications from the Institute of Electronics and Telecommunications of
Rennes 1, Rennes, France, in 2011. In 2011, he was involved in postdoctoral
training at the University of Quebec in Outaouais (UQO), Gatineau, QC, Canada.
His research field was optically transparent antenna systems for telecommunications.
Since 2014 he works at Tallysman Wireless in Ottawa, Canada and specialized in
the design of high performance GNSS antennas and associated electronics.


Recent Advances in Retinal Imaging! @ Room 4359, Mackenzie Building
Aug 19 @ 18:00 – 19:30
Recent Advances in Retinal Imaging! @ Room 4359, Mackenzie Building | Ottawa | Ontario | Canada


Over 250 million people in the world are blind or visually impaired. But 75% of visual impairment can be treated or entirely prevented if detected early, monitored effectively, and treated promptly. Various retinal imaging instruments have been developed to assist the screening, diagnosing and monitoring of vision critical eye diseases. These instruments range from traditional ophthalmoscope to digital fundus camera; from ocular tomography (OCT) to laser scanning ophthalmoscope. In this presentation the speaker will attempt to explain the principle of retinal imaging; give an overview on the advances in retinal imaging; and discuss the opportunities for innovation in vision care and retinal imaging.


Dr Kexing Liu is the president and CEO of OcuXcel Corporation, a technology company based in Kanata, Ontario, dedicated to providing advanced technology solutions and developing new products from a global tech workforce for ophthalmology and vision health. Kexing received his Ph.D. degree from University of Manchester (UMIST), UK. One of his first professional and technology contribution was in pioneering the integration and qualification of GPS navigation technology into the on-board flight management systems for civil aviation as a project leader at CMC Electronique, Montreal. Later he joined a start-up called Cambrian Systems Corporation, Kanata, He was one of the the principal architects for the world’s first metro DWDM system product – OPTera (OM5K) at Cambrian. The company was later acquired by Nortel Networks. The OM5K as an extremely profitable line of product has generated over US$3 billion revenue for Nortel (now Ciena) since the acquisition. Later on, Kexing had an opportunity to serve as the principal of Mira Connections, a consulting business helping medical device companies on systems engineering and management issues. Most recently Kexing has architected multispectral digital ophthalmoscope for retinal health screening. Kexing has published more than 30 scientific papers on fiber optics and photonics. He is inventor/co-inventor for 17 granted patents ranging from photonics, optical communications systems, control systems engineering, and ophthalmology instruments. Kexing is a senior member of IEEE and is currently serving as the chair of an IEEE Canada committee responsible for outreach.

This event is organized by IEEE WIE and sponsored by IEEE Photonics Society – Ottawa Section!!



The Lightning Phenomenon @ 4124-ME (Meckenzie Building), Carleton University
Oct 22 @ 12:00 – 13:00

IEEE  Distinguished Lecturer Presentation hosted jointly by the IEEE Ottawa EMC and CASS/SSCS/EDS Chapters:


Speaker  :     Dr. Marcos Rubinstein, Professor, University of Applied Sciences of Western Switzerland

Topic    :     The Lightning Phenomenon

Date     :     Tuesday October 22, 2019

Time     :     12(noon) – 1pm

Location :     4124-ME (Meckenzie Building), Carleton University, 1125 Colonel By Drive, Ottawa – K1S5B6


Registration:  Free, Please E-mail Ram Achar (

Refreshments: Served


Parking  : Payment based Metered Parking spots in the campus



               Ram Achar, Dept. of Electronics, Carleton University

               Chairman CASS/SSCS/EDS Chapters


               Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter



Lightning is one of the primary causes of damage and malfunction of telecommunication and power networks and one of the leading causes of weather-related deaths and injuries.

Lightning is composed of numerous physical processes, of which only a few are visible to the naked eye.

This lecture presents various aspects of the lightning phenomenon, its main processes and the technologies that have been developed to assess the parameters that are important for engineering and scientific applications. These parameters include the channel-base current and its associated electromagnetic fields.

The measurement techniques for these parameters are intrinsically difficult due to the randomness of the phenomenon and to the harsh electromagnetic environment created by the lightning itself.

Besides the measurement of the lightning parameters, warning and insurance applications require the real-time detection and location of the lightning strike point. The main classical and emerging lightning detection and location techniques, including those used in currently available commercial lightning location systems will be described in the lecture. The newly proposed Electromagnetic Time Reversal technique, which has the potential to revolutionize lightning location will also be presented.



Marcos Rubinstein received the Master’s and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville.

In the decade of the 1990’s, he worked as a research engineer at the Swiss Federal Institute of Technology, Lausanne and as a program manager at Swisscom in the areas of electromagnetic compatibility and lightning. Since 2001, he is a professor at the University of Applied Sciences of Western Switzerland HES-SO, Yverdon-les-Bains, where he is currently responsible for the advanced Communication Technologies Group. He is the author or coauthor of 300 scientific publications in reviewed journals and international conferences. He is also the coauthor of nine book chapters and the co-editor of a book on time reversal. He served as the Editor-in-Chief of the Open Atmospheric Science Journal, and currently serves as an Associate Editor of the IEEE Transactions on EMC.

Prof. Rubinstein received the best Master’s Thesis award from the University of Florida, the IEEE achievement award and he is a co-recipient of the NASA’s Recognition for Innovative Technological Work award. He also received the ICLP Karl Berger award. He is a Fellow of the IEEE and an EMP Fellow, a member of the Swiss Academy of Sciences and of the International Union of Radio Science.



Join IEEE or a Society

Member Services

IEEE Ottawa Section Logo

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.