Events

Nov
12
Tue
5G for Smart Everything: From Smart Meters to the New Power Grid. What is needed to get there? @ Building M-36, National Research Council (NRC) Canada
Nov 12 @ 14:00 – 15:00

Title: 5G for Smart Everything: From Smart Meters to the New Power Grid. What is needed to get there ?

Speaker: Akshay Sharma, Executive Research Fellow, neXtCurve: www.next-curve.com

Date/Time: Tuesday, November 12, 2019, from 2 – 3 pm.

Admission: Free, but registration is required for security purposes. Please contact by e-mail: branislav @ieee.org or ajit.pardasani@ieee.org.

 

Abstract: This talk discusses how 5G with Edge Computing, and Ultra-low latency (sub-5ms) with Gigabit speed bandwidth will be a game changer with Smart Meters and a new Electric Grid can be enabled with Smart Lamposts. As we transition to DevOps, AIOps, newer Closed Loop Automation systems will occur. As we connect AI-powered Virtual Personal Assistants to IoT devices in the home, now we have to imagine the entire macro-infrastructures being all hyper-connected. What is needed to get there will be discussed at the seminar.

 

Speaker’s Bio: Akshay Sharma is originally from Ottawa, B. Eng Computer Systems Engineering from Carleton, a tech analyst, formerly from Gartner, having authored or co-authored over 280 research notes, on emerging technologies like SD-WAN, 5G, mobile video, cloud CDN, IoT, etc. in the past decade. A frequent speaker at tech events, he is often quoted in leading institutions like CNN, Wall St. Journal, etc. He is a former CTO of one of the first video/WiFi smartphone firms, former Chief Architect at Siemens Mobile, and has been given awards by the NJ IEEE Chapter on talks he gave on 5G and Cybersecurity. He is on the tech advisory board for 5G and DevOps startups: LB-N, Kovair, along with others. Mr Sharma’s recent publications include: Search Results for “akshay” – neXt Curve

Nov
24
Sun
Modern Day Applications of Power Electronics – Who Can Benefit?
Nov 24 @ 00:46 – 01:46
Modern Day Applications of Power Electronics – Who Can Benefit?

AbstractApplication of power electronics is widespread in everyday
life. Some applications are considered as “nice to have it;” in other cases,
they are essential. This presentation discusses a wide variety of daily-used
applications around the world. Also covered is an advanced topic, such as SMART
Controller that today’s grid requires for voltage regulation, power factor
regulation, unbalance voltage/current regulation, harmonic elimination and so
on. A SMART Controller that is based on functional requirements and
cost-effective solutions is derived from utilizing the best features of all the
technical concepts that are developed until now. Final year students of
electrical engineering undergraduate curriculum, post graduate students,
researchers, academicians and utility engineers will benefit from attending
this course. The participants will hear from an expert who actually designed
and commissioned a few utility-grade SMART controllers since their inception in
the 1990s.

 

Speaker’s
Bio

Kalyan Sen, a
Fulbright Scholar, is the Chief Technology Officer of Sen Engineering
Solutions, Inc. (
www.sentransformer.com) that specializes in
developing SMART power flow controllers—a functional requirements-based and
cost-effective solution. He
received
BEE,
MSEE, and PhD degrees, all in Electrical Engineering, from Jadavpur University,
India, Tuskegee University, USA, and Worcester Polytechnic Institute, USA,
respectively. He also received an MBA from Robert Morris University, USA.

 

Dr.
Sen spent more than 30 years in academia and industry and became a Westinghouse
Fellow Engineer. He was a key member of the Flexible Alternating Current
Transmission Systems (FACTS) development team at the Westinghouse Science &
Technology Center in Pittsburgh. He contributed in all aspects (conception,
simulation, design, and commissioning) of FACTS projects at Westinghouse. He
conceived some of the basic concepts in FACTS technology. He has authored or
coauthored more than 25 peer-reviewed publications, 8 issued patents, a book
and 4 book chapters in the areas of FACTS and power electronics. He is the
coauthor of the book titled, Introduction
to FACTS Controllers: Theory, Modeling, and Applications
, IEEE Press and
John Wiley & Sons, Inc. 2009, which is also published in Chinese and Indian
paperback editions. He is the co-inventor of Sen Transformer.

Nov
28
Thu
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College
Nov 28 @ 18:00 – 20:00
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College | Ottawa | Ontario | Canada

Seminar by IEEE Ottawa Section, PELS, SSIT, RS-PEL, PES, Education Activities, Algonquin College IEEE Student Branch, ComSoc, CESoc, and BTS Ottawa Joint Chapter.

The IEEE Ottawa Section is inviting all interested IEEE members and nonmembers to a seminar

Modern Day Applications of Power Electronics – Who Can Benefit?

By 

Kalyan K. Sen

Sen Engineering Solutions, Inc.

DATE:

November 28th 2019

TIME:
Refreshments, Registration and Networking:
18:00;
Seminar:
18:30 – 20:00.

PLACE:
Algonquin College, Room P208, 1385 Woodroffe Ave., Ottawa.

PARKING:

Parking in Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a
machine and display the ticket on your dashboard.

 

ADMISSION:

Free. Registration required.

Please register by e-mail contacting: ottawapels@gmail.com

 

Abstract:

Application of power electronics is widespread in everyday life. Some applications are considered as “nice to have it;” in other cases, they are essential. This presentation discusses a wide variety of daily-used applications around the world. Also covered is an advanced topic, such as SMART Controller that today’s grid requires for voltage regulation, power factor regulation, unbalance voltage/current regulation, harmonic elimination and so on. A SMART Controller that is based on functional requirements and cost-effective solutions is derived from utilizing the best features of all the technical concepts that are developed until now. Final year students of electrical engineering undergraduate curriculum, post graduate students, researchers, academicians and utility engineers will benefit from attending this course. The participantswill hear from an expert who actually designed and commissioned a fewutility-grade SMART controllers since their inception in the 1990s.

 

Modern Day Applications of Power Electronics – Who Can Benefit
Mar
17
Tue
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129
Mar 17 @ 18:00 – 19:30
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129 | Ottawa | Ontario | Canada

NOTE: This event has been cancelled due to COVID-19 precautions

Dear colleagues,

Due to the current situation regarding corrona virus COVID-19, we have to CANCEL our IEEE Ottawa Section Seminar:

“Microgrid Stability Definitions, Analysis, and Modeling”
by Dr. Mostafa Farrokhabadi,
which was scheduled for Tuesday, Mar. 17, 2020, 6:00 p.m., at Algonquin College, 1385 Woodroffe Ave., T-Building, Room T129.

The new date and time for this seminar will be determined and announced when the circumstances allow.

We are sorry for the inconvenience and thank you for your understanding.

Sincerely,

Branislav Djokic

 

TITLE: Microgrid Stability Definitions, Analysis, and Modeling

SPEAKER: Dr. Mostafa Farrokhabadi, Director of Technology at BluWave-ai, Ottawa

DATE:     Tuesday, March 17, 2020.

TIME:     Refreshments, Registration and Networking: 6:00 p.m.; Seminar: 6:30 p.m. – 7:30 p.m.

LOCATION: Ciena Optophotonics Lab, Room T129, T-Building, School of Advanced Technology, Algonquin College, 1385 Woodroffe Ave., Ottawa, ON Canada K2G 1V8.

PARKING: Parking at Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a machine and display the ticket on your dashboard. Please respect restricted areas.

Abstract: A microgrid is defined as a group of Distributed Energy Resources (DERs) and loads that act locally as a single controllable entity and can operate in both grid-connected and islanded modes. Microgrids are considered a critical link in the evolution from vertically integrated bulk power systems to smart decentralized networks, by facilitating the integration of DERs. Entities, such as government agencies, utilities, military bases, and universities around the world are deploying microgrids, and an increasing number of these systems are expected to be developed in the next decade. In general, stability in microgrids has been treated from the perspective of conventional bulk power systems. However, the nature of the stability problem and dynamic performance of a microgrid are considerably different than those of a conventional power system due to intrinsic differences between microgrids and bulk power systems, such as size, feeder types, high share of Renewable Energy Sources (RES), converter-interfaced components, low inertia, measurement devices such as Phase-Locked Loop (PLL), unbalanced operation, etc.

This seminar discusses the findings of the award-winning IEEE PES Task Force on Microgrid Stability Definitions, Analysis, and Modeling, which defines concepts and identifies relevant issues related to stability in microgrids. The seminar presents definitions and classification of microgrid stability, considering pertinent microgrid features such as voltage-frequency dependence, unbalancing, low inertia, and generation intermittency. A few examples will be also presented, highlighting some of the stability classes discussed during the seminar.

Speaker’s Bio: Dr. Mostafa Farrokhabadi is the Senior Director of Technology at BluWave-ai, an internationally award-winning startup offering AI-enabled control and optimization solutions for smart grids. He has more than 8 years of experience in designing mission critical grid solutions for industry and academia, including technical leadership of a $6M international consortium in Electric Grid Modernization, and Smart Grid projects with Hatch and Canadian Solar. Mostafa has authored/co-authored several high-impact technical papers and patents on intelligent control and optimization of renewable-penetrated grids.

Mostafa obtained his PhD in Electrical and Computer Engineering from the University of Waterloo. He has also studied and performed research in Sweden at KTH and Germany at KIT. During the course of his career, Mostafa has received multiple business, research, and teaching awards, including the prestigious University of Waterloo Doctoral Thesis Completion Award and Ottawa’s Forty Under 40.

Mostafa has also led the award-winning IEEE Power and Energy Society Task Force on microgrid stability, an international coalition of 21 researchers from 14 institutions investigating stability issues in microgrids. Currently, he serves as an Associate Editor of the IEEE Transactions on Smart Grid.

Admission: Free. Registration required. Please register by e-mail contacting: ajit.pardasani@ieee.org or branislav@ieee.org.

 

IEEE_MFarrokhabadi_Seminar_Flyer_17Mar2020
May
14
Thu
Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S
May 14 @ 12:00 – 13:00

Presented by IEEE MTT-S Distinguished Microwave Lecturer (DML) Talks:

Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S

By
Dr. Payam Heydari
University of California, Irvine

Date: Thursday, May 14 , 2020

Time: 12:00 PM – 1 PM

Abstract:

The ongoing super-linear growth of world’s population coupled with the worldwide access to internet and the general public’s tendency to use more bandwidth-intensive applications fuel the urgency to enhance wireless infrastructures so as to meet these demands. Consequently, the wireless R&D is headed towards the inception of “Beyond-5G” (e.g., 6G) technology.  This webinar provides a comprehensive overview of challenges and opportunities in designing beyond-5G transceiver architectures capable of achieving high data rates above and beyond 20 Gbps. 

                                                                 Speaker Bio:

Payam Heydari received his Ph.D. degree from the University of Southern California in 2001. He is currently a Full Professor of Electrical Engineering at the University of California, Irvine. Dr. Heydari’s research covers the design of terahertz/millimeter-wave/RF and analog integrated circuits. He is the (co)-author of two books, one book chapter, and more than 150 journal and conference papers. 

Dr. Heydari is an AdCom member of the IEEE Solid-State Circuits Society. Dr. Heydari currently serves an Associate Editor for the IEEE Journal of Solid-State Circuits and the IEEE Solid-State Circuits Letters. He was a member of the Technical Program Committee of the International Solid-State Circuits Conference (ISSCC). Dr. Heydari is an IEEE Fellow for contributions to silicon-based millimeter-wave integrated circuits and systems.

 

                Event is free, but space is limited.  All participants must register in advance. For                                                  Registration: please use the following link



IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.