Events

Oct
22
Tue
The Lightning Phenomenon @ 4124-ME (Meckenzie Building), Carleton University
Oct 22 @ 12:00 – 13:00

IEEE  Distinguished Lecturer Presentation hosted jointly by the IEEE Ottawa EMC and CASS/SSCS/EDS Chapters:

 

Speaker  :     Dr. Marcos Rubinstein, Professor, University of Applied Sciences of Western Switzerland

Topic    :     The Lightning Phenomenon

Date     :     Tuesday October 22, 2019

Time     :     12(noon) – 1pm

Location :     4124-ME (Meckenzie Building), Carleton University, 1125 Colonel By Drive, Ottawa – K1S5B6

 

Registration:  Free, Please E-mail Ram Achar (achar@doe.carleton.ca)

Refreshments: Served

 

Parking  : Payment based Metered Parking spots in the campus

 

Organizers:

               Ram Achar, Dept. of Electronics, Carleton University

               Chairman CASS/SSCS/EDS Chapters

               achar@doe.carleton.ca

               Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter

 

Abstract

Lightning is one of the primary causes of damage and malfunction of telecommunication and power networks and one of the leading causes of weather-related deaths and injuries.

Lightning is composed of numerous physical processes, of which only a few are visible to the naked eye.

This lecture presents various aspects of the lightning phenomenon, its main processes and the technologies that have been developed to assess the parameters that are important for engineering and scientific applications. These parameters include the channel-base current and its associated electromagnetic fields.

The measurement techniques for these parameters are intrinsically difficult due to the randomness of the phenomenon and to the harsh electromagnetic environment created by the lightning itself.

Besides the measurement of the lightning parameters, warning and insurance applications require the real-time detection and location of the lightning strike point. The main classical and emerging lightning detection and location techniques, including those used in currently available commercial lightning location systems will be described in the lecture. The newly proposed Electromagnetic Time Reversal technique, which has the potential to revolutionize lightning location will also be presented.

 

Biography

Marcos Rubinstein received the Master’s and Ph.D. degrees in electrical engineering from the University of Florida, Gainesville.

In the decade of the 1990’s, he worked as a research engineer at the Swiss Federal Institute of Technology, Lausanne and as a program manager at Swisscom in the areas of electromagnetic compatibility and lightning. Since 2001, he is a professor at the University of Applied Sciences of Western Switzerland HES-SO, Yverdon-les-Bains, where he is currently responsible for the advanced Communication Technologies Group. He is the author or coauthor of 300 scientific publications in reviewed journals and international conferences. He is also the coauthor of nine book chapters and the co-editor of a book on time reversal. He served as the Editor-in-Chief of the Open Atmospheric Science Journal, and currently serves as an Associate Editor of the IEEE Transactions on EMC.

Prof. Rubinstein received the best Master’s Thesis award from the University of Florida, the IEEE achievement award and he is a co-recipient of the NASA’s Recognition for Innovative Technological Work award. He also received the ICLP Karl Berger award. He is a Fellow of the IEEE and an EMP Fellow, a member of the Swiss Academy of Sciences and of the International Union of Radio Science.

May
14
Thu
Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S
May 14 @ 12:00 – 13:00

Presented by IEEE MTT-S Distinguished Microwave Lecturer (DML) Talks:

Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S

By
Dr. Payam Heydari
University of California, Irvine

Date: Thursday, May 14 , 2020

Time: 12:00 PM – 1 PM

Abstract:

The ongoing super-linear growth of world’s population coupled with the worldwide access to internet and the general public’s tendency to use more bandwidth-intensive applications fuel the urgency to enhance wireless infrastructures so as to meet these demands. Consequently, the wireless R&D is headed towards the inception of “Beyond-5G” (e.g., 6G) technology.  This webinar provides a comprehensive overview of challenges and opportunities in designing beyond-5G transceiver architectures capable of achieving high data rates above and beyond 20 Gbps. 

                                                                 Speaker Bio:

Payam Heydari received his Ph.D. degree from the University of Southern California in 2001. He is currently a Full Professor of Electrical Engineering at the University of California, Irvine. Dr. Heydari’s research covers the design of terahertz/millimeter-wave/RF and analog integrated circuits. He is the (co)-author of two books, one book chapter, and more than 150 journal and conference papers. 

Dr. Heydari is an AdCom member of the IEEE Solid-State Circuits Society. Dr. Heydari currently serves an Associate Editor for the IEEE Journal of Solid-State Circuits and the IEEE Solid-State Circuits Letters. He was a member of the Technical Program Committee of the International Solid-State Circuits Conference (ISSCC). Dr. Heydari is an IEEE Fellow for contributions to silicon-based millimeter-wave integrated circuits and systems.

 

                Event is free, but space is limited.  All participants must register in advance. For                                                  Registration: please use the following link



Jun
10
Wed
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION
Jun 10 @ 14:30 – 16:00
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION

Presented by the IEEE Ottawa Section MTT-S/AP-S Chapter & Young Professionals 

Accelerating 5G Design Innovation Through Simulation 

                                                                   By
Dr. Laila Salman 

                                                              Ansys Inc.

                                          Date: Wednesday, June 10, 2020

                                                Time: 2:30 PM – 4:00 PM

                                                                   Location: Online
                       

Abstract

5G connectivity is the next technological revolution. This pervasive, ultrafast compute network will connect billions of devices with data on-demand. It will drive economic expansion in many sectors, spawn new products and services, and transform our lives as we know it. Yet, before 5G can deliver on its promises and quality of service (QoS) metrics, wireless systems designers and engineers must overcome sizable challenges.  

Ansys 5G simulation solutions empower these individuals to solve the complexities impeding device, network and data center design. Ansys 5G simulation solutions provide electromagnetics, semiconductor, electronics cooling and mechanical analysis tools to accurately simulate 5G radio and related technologies. The multi-solution platform leverages high-performance computing that can be deployed across the enterprise, allowing designers and engineering experts to collaborate more effectively. 

This seminar will highlight the following 5G engineering challenges: 

·  End User Equipment  

    o   multi-frequency band antenna integration 

    o   modeling of mm-wave array antennas  

    o   RFI, EMI & Desense Mitigation 

·  Base-Station Antenna Modeling 

    o  Full Communication Analysis in Electrically Large & Complex Environment 

    o  RFI, Data Coverage & ElectroThermal Reliability 

 

Speaker Bio

Dr. Laila Salman received the B.S. and M.S. degrees in electronics and communication engineering from Cairo University, Egypt, and the PhD. Degree in electromagnetic and antenna design from the University of Mississippi. She also worked as a post-doctoral student at the Université de Quebec en Outaouais, Gatineau, Canada till 2010. Her research was on dielectric resonator antennas, wearable antennas, microwave and millimeter-wave circuits and systems, microwave imaging for early detection of breast cancer and scattering from left-handed metamaterials. Dr. Salman joined Ansys Canada Ltd. in August 2010 as a Lead Technical Services Specialist for High Frequency Applications.

Registration: Please use the link in the registration section to sign up for the event.

To join event use the following link.

Sep
2
Wed
Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design
Sep 2 @ 11:00 – 12:00

 

IEEE Ottawa Section: MTT-S / AP-S Chapter presents:

Title: Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design

Date: September 2nd, 2020

Time: 11 AM (ET)

Register at: https://events.vtools.ieee.org/m/238482

This talk will review some recent advancements achieved on the characterization and modelling of the trapping effects felt in GaN HEMT transistors, and their impact on microwave circuit design. Because of their nowadays importance, a particular attention will be payed to applications on high power amplifiers for mobile wireless infrastructure and pulsed radar applications.

For that, the talk will start by recollecting the most common model formulations adopted for the various levels of RF engineering, from the device level (physics) to the transistor (circuit) and amplifier (system) level. Starting by the Shockley-Read-Hall capture and emission processes we will be able to understand one of the fundamental signatures of trapping effects, the significantly different charge and discharging time constants, and its impact on power amplifier nonlinear distortion behavior. Then, some widely adopted approaches of the channel current transients’ characterization are addressed and the talk concludes by presenting some illustrative cases of application to RF high power amplifiers.

Speaker: Jose C. Pedro

José C. Pedro received the Diploma, Ph.D., and Habilitation degrees in electronics and telecommunications engineering from the Universidade de Aveiro, Aveiro, Portugal, in 1985, 1993, and 2002, respectively.

He is currently a Full Professor with the Universidade de Aveiro and head of the Aveiro site of the Instituto de Telecomunicações. He has authored 2 books and authored or co-authored more than 200 papers in international journals and symposia. His current research interests include active device modelling and the analysis and design of various nonlinear microwave circuits.

Dr. Pedro was a recipient of various prizes including the 1993 Marconi Young Scientist Award, the 2000 Institution of Electrical Engineers Measurement Prize, the 2015 EuMC Best Paper Microwave Prize, and the Microwave Distinguished Educator Award. He has served the scientific community as a Reviewer and an Editor for several conferences and journals, namely, the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, for which he was the Editor-in-Chief.

Sep
16
Wed
Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication Applications
Sep 16 @ 17:00 – 18:00
Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication                Applications

IEEE Distinguished Lecturer Presentation hosted jointly by the OTTAWA EMC/CPMT/ED/CAS/SSCS/AP/MTT Chapters:

Speaker : Dr. Xiaoxiong Gu, IBM T.J. Watson Research Center, NY
Topic : Opportunities, Challenges and Implementation of Silicon Integration and Packaging in mmWave Radar and Communication Applications
Date : Wednesday September 16, 2020
Time : 5:00 PM to 6:00 PM EST
Location : Online via ZOOM
Registration: Free, and is on a first to reply basis. Preference given to IEEE EMC CPMT/ED/CAS/SSCS/APS/MTT society members. E-mail Reservation is required.

Organizer: Dr. Syed Bokhari, Chairman, IEEE Ottawa EMC chapter
Syed.Bokhari@fidus.com,
Office :(613) 595 – 0507 Ext. 377, Cell: (613) 355 – 6632

Abstract: Co-design and integration of RFIC, package, and antennas are critical to enable multiple aspects of 5G communications (backhaul, last mile, mobile access) and are particularly challenging at mmWave frequencies. This talk will cover various important aspects of mmWave antenna module packaging and integration for base station, backhaul, and user equipment applications, respectively, with particular emphasis on signal, power and EMC integrity. We will first present a historical perspective on Si-based mmWave modules and approaches for antenna and IC integration including trade-offs. We will focus on the challenges, implementation, and characterization of a 28-GHz phased-array module with 64 dual polarized antennas for 5G base station applications. Second, we will present a W-band phased-array module with 64-element dual-polarization antennas for radar imaging and backhaul application. The module consists of a multilayer
organic chip-carrier package and a 16-element phased-array TX IC or a 32- element RX IC chipset. Third, we will describe a compact, low-power, 60-GHz switched-beam transceiver module suitable for handset integration incorporating four antennas that support both normal and end-fire directions for a wide link spatial coverage. Detailed signal, power and EMC modeling and analysis of the modules and the system are presented.

Speaker Bio:

Xiaoxiong Gu received the Ph.D. in electrical engineering from the University of Washington, Seattle, USA, in 2006. He joined IBM Research as a Research Staff Member in January 2007. His research activities are focused on 5G radio access technologies, optoelectronic and mm-wave packaging, electrical designs, modeling and characterization of communication, imaging radar and computation systems. He has recently worked on antenna-in-package design and integration for mm-wave imaging and communication systems including Ka-band, V-band and Wband phased-array modules. He has also worked on 3D electrical packaging and signal/power integrity analysis for high-speed I/O subsystems including onchip and off-chip interconnects. He has been involved in developing novel TSV
and interposer technologies for heterogeneous system integration.

Dr. Gu has authored over 90 peer-reviewed publications, 2 book chapters and holds 9 issued patents. He was a co-recipient of IEEE ISSCC 2017 Lewis Winner Award for Outstanding Paper and IEEE JSSC 2017 Best Paper Award (the world’s first reported silicon-based 5G mmWave phased array antenna module operating at 28GHz). He was a co-recipient of the 2017 Pat Goldberg Memorial Award to
the best paper in computer science, electrical engineering, and mathematics published by IBM Research. He received IBM Outstanding Research Accomplishment in 2019 and Outstanding Technical Achievement Award in 2016, four IBM Plateau Invention Awards in 2012 ~ 2016, the IEEE EMC Symposium Best Paper Award in 2013, two SRC Mahboob Khan Outstanding Industry Liaison Awards in 2012 and
2014, the Best Conference Paper Award at IEEE EPEPS in 2011, IEC DesignCon Paper Awards in 2008 and 2010, the Best Interactive Session Paper Award at IEEE DATE in 2008, and the Best Session Paper Award at IEEE ECTC in 2007. Dr. Gu is the co-chair of Professional Interest Community (PIC) on Computer System Designs at IBM. He is a Senior Member of IEEE and has been serving on different
program committees for MTT-S, EPEPS, ECTC, EDAPS and DesignCon. Dr. Gu was the General Chair of IEEE EPEPS 2018 in San Jose, CA. He is also a Distinguished Lecturer for IEEE EMC Society in 2019-2020 and is currently an Associate Editor for IEEE Transactions on Component, Packaging and Manufacturing Technology.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.