Events

Feb
22
Sat
Technology Stewardship Workshop @ Vitesse Re-Skilling Canada
Feb 22 @ 18:00 – 20:00
Technology Stewardship Workshop @ Vitesse Re-Skilling Canada | Ottawa | Ontario | Canada

Technological Stewardship is a new concept intended to focus on the promise of technology to create a better future for society today and avoid the negative consequences. While Technologies have the promise to address key issues and create a better future, new developments often amplify inequities and create new kinds of risk. What does this mean for how to move
forward?

Through this interactive 2-hour workshop, you will learn about Technological Stewardship and develop your ability to ensure technology makes the world a better place for all. You will also be introduced to a powerful tool for practically integrating these concepts into the product design/development process.

Facilitator:

Mark Abbott is the Executive Director of the Engineering Change Lab, which serves as a catalyst for evolving the engineering community to reach its full potential as stewards of technology for the benefit of humanity.  Over the past 5 years, over 125 organizations and 350+ individual leaders (CEOs, VPs, Deans, Directors) have collaborated using the Lab’s platform advancing understanding and action to evolve engineering. Previously, Mark served as member of the Executive Team at Engineers without borders for several years.

This interactive workshop is limited to 45 attendees so as to create an optimal interactive and learning environment.  This series of workshops is planned to have subsequent workshops taking place in March and April.  We are especially interested in professionals willing to tryout the powerful tools and providing feedback on integrating the concepts into the product design / development process.

IEEE-TEMS-February-Announcement

Mar
18
Wed
IEEE Ottawa Seminar Series on AI and Machine Learning – The Rise & Foreseeable Future of Artificial Intelligence: Observations from a Commercial Pioneer
Mar 18 @ 11:30 – 13:30

IEEE Ottawa Seminar Series on AI and Machine Learning

IEEE Ottawa Section, PHO Chapter,
CS Chapter, SP Chapter, TEMS Chapter

Jointly with Vitesse
Reskilling

The Rise & Foreseeable Future of
Artificial Intelligence:
Observations from a Commercial Pioneer

Peter MacKinnon

Synergy Technology
Management

—————————————————————-

Wednesday, March 18, 2020

359 Terry Fox Drive, Suite 200, Kanata, Ontario

11:30 – 13:30

—————————————————————-

Artificial Intelligence (AI) is constantly in the news
with stories of promise and peril.
Political leaders have declared it a national priority, the global high
tech industry is racing AI apps to markets and policy and governance
implications of AI are in their infancy.
We will explore where this is all heading.

We will begin with some definitions and a bit of
history behind the rise of AI.  The talk
will then place AI in the context of being a potentially disruptive technology
on society. This will lead to a discussion about ethics and moral issues
regarding the development and use of aspects of AI as a dual-use
technology.  Time permitting, the role of
AI in defence and security will be used as an example for appreciating the
complexity and ethical issues brought on by AI. We will then turn to the role
of the engineer in this new world being enabled by AI.

Finally, we will review potential governance and
policy issues and options to address the rapid unchecked development and
application of AI within society at large; and, ultimately end with a
precautionary note.

Biography

The speaker was
a pioneer in the commercialization of AI in the 1980s and today is actively
involved in ethical and policy issues related to AI.  Peter has an extensive background on the
forefront of scientific and technological breakthroughs around disruptive
technologies and their impacts on society.
He was an early proponent in the development and promotion of Big Data
and data analytics using High Performance Computers, and was a major
contributor in creating the Internet in Canada, among other accomplishments.

Peter has a
background as a scientist, business manager, entrepreneur, domestic and
international bureaucrat, executive, diplomat, management advisor, and
academic; including most recently affiliation with both Telfer School of
Management and the Faculty of Engineering at the University of Ottawa and the
Faculty of Engineering at Carleton University.
Peter also blogs on AI for the Institute on Science, Society and Policy,
an interfaculty organisation at uOttawa.

 

—————————————————————-

Event
is free, but space is limited.  All
participants must register in advance.   

Please
follow the link to register

https://events.vtools.ieee.org/m/226058

—————————————————————-

For
more information, please contact: Kexing Liu kexing.liu@ieee.org

May
14
Thu
Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S
May 14 @ 12:00 – 13:00

Presented by IEEE MTT-S Distinguished Microwave Lecturer (DML) Talks:

Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S

By
Dr. Payam Heydari
University of California, Irvine

Date: Thursday, May 14 , 2020

Time: 12:00 PM – 1 PM

Abstract:

The ongoing super-linear growth of world’s population coupled with the worldwide access to internet and the general public’s tendency to use more bandwidth-intensive applications fuel the urgency to enhance wireless infrastructures so as to meet these demands. Consequently, the wireless R&D is headed towards the inception of “Beyond-5G” (e.g., 6G) technology.  This webinar provides a comprehensive overview of challenges and opportunities in designing beyond-5G transceiver architectures capable of achieving high data rates above and beyond 20 Gbps. 

                                                                 Speaker Bio:

Payam Heydari received his Ph.D. degree from the University of Southern California in 2001. He is currently a Full Professor of Electrical Engineering at the University of California, Irvine. Dr. Heydari’s research covers the design of terahertz/millimeter-wave/RF and analog integrated circuits. He is the (co)-author of two books, one book chapter, and more than 150 journal and conference papers. 

Dr. Heydari is an AdCom member of the IEEE Solid-State Circuits Society. Dr. Heydari currently serves an Associate Editor for the IEEE Journal of Solid-State Circuits and the IEEE Solid-State Circuits Letters. He was a member of the Technical Program Committee of the International Solid-State Circuits Conference (ISSCC). Dr. Heydari is an IEEE Fellow for contributions to silicon-based millimeter-wave integrated circuits and systems.

 

                Event is free, but space is limited.  All participants must register in advance. For                                                  Registration: please use the following link



Jun
10
Wed
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION
Jun 10 @ 14:30 – 16:00
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION

Presented by the IEEE Ottawa Section MTT-S/AP-S Chapter & Young Professionals 

Accelerating 5G Design Innovation Through Simulation 

                                                                   By
Dr. Laila Salman 

                                                              Ansys Inc.

                                          Date: Wednesday, June 10, 2020

                                                Time: 2:30 PM – 4:00 PM

                                                                   Location: Online
                       

Abstract

5G connectivity is the next technological revolution. This pervasive, ultrafast compute network will connect billions of devices with data on-demand. It will drive economic expansion in many sectors, spawn new products and services, and transform our lives as we know it. Yet, before 5G can deliver on its promises and quality of service (QoS) metrics, wireless systems designers and engineers must overcome sizable challenges.  

Ansys 5G simulation solutions empower these individuals to solve the complexities impeding device, network and data center design. Ansys 5G simulation solutions provide electromagnetics, semiconductor, electronics cooling and mechanical analysis tools to accurately simulate 5G radio and related technologies. The multi-solution platform leverages high-performance computing that can be deployed across the enterprise, allowing designers and engineering experts to collaborate more effectively. 

This seminar will highlight the following 5G engineering challenges: 

·  End User Equipment  

    o   multi-frequency band antenna integration 

    o   modeling of mm-wave array antennas  

    o   RFI, EMI & Desense Mitigation 

·  Base-Station Antenna Modeling 

    o  Full Communication Analysis in Electrically Large & Complex Environment 

    o  RFI, Data Coverage & ElectroThermal Reliability 

 

Speaker Bio

Dr. Laila Salman received the B.S. and M.S. degrees in electronics and communication engineering from Cairo University, Egypt, and the PhD. Degree in electromagnetic and antenna design from the University of Mississippi. She also worked as a post-doctoral student at the Université de Quebec en Outaouais, Gatineau, Canada till 2010. Her research was on dielectric resonator antennas, wearable antennas, microwave and millimeter-wave circuits and systems, microwave imaging for early detection of breast cancer and scattering from left-handed metamaterials. Dr. Salman joined Ansys Canada Ltd. in August 2010 as a Lead Technical Services Specialist for High Frequency Applications.

Registration: Please use the link in the registration section to sign up for the event.

To join event use the following link.

Sep
2
Wed
Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design
Sep 2 @ 11:00 – 12:00

 

IEEE Ottawa Section: MTT-S / AP-S Chapter presents:

Title: Characterization and Modeling of GaN HEMT Trapping Effects for Microwave Circuit Design

Date: September 2nd, 2020

Time: 11 AM (ET)

Register at: https://events.vtools.ieee.org/m/238482

This talk will review some recent advancements achieved on the characterization and modelling of the trapping effects felt in GaN HEMT transistors, and their impact on microwave circuit design. Because of their nowadays importance, a particular attention will be payed to applications on high power amplifiers for mobile wireless infrastructure and pulsed radar applications.

For that, the talk will start by recollecting the most common model formulations adopted for the various levels of RF engineering, from the device level (physics) to the transistor (circuit) and amplifier (system) level. Starting by the Shockley-Read-Hall capture and emission processes we will be able to understand one of the fundamental signatures of trapping effects, the significantly different charge and discharging time constants, and its impact on power amplifier nonlinear distortion behavior. Then, some widely adopted approaches of the channel current transients’ characterization are addressed and the talk concludes by presenting some illustrative cases of application to RF high power amplifiers.

Speaker: Jose C. Pedro

José C. Pedro received the Diploma, Ph.D., and Habilitation degrees in electronics and telecommunications engineering from the Universidade de Aveiro, Aveiro, Portugal, in 1985, 1993, and 2002, respectively.

He is currently a Full Professor with the Universidade de Aveiro and head of the Aveiro site of the Instituto de Telecomunicações. He has authored 2 books and authored or co-authored more than 200 papers in international journals and symposia. His current research interests include active device modelling and the analysis and design of various nonlinear microwave circuits.

Dr. Pedro was a recipient of various prizes including the 1993 Marconi Young Scientist Award, the 2000 Institution of Electrical Engineers Measurement Prize, the 2015 EuMC Best Paper Microwave Prize, and the Microwave Distinguished Educator Award. He has served the scientific community as a Reviewer and an Editor for several conferences and journals, namely, the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, for which he was the Editor-in-Chief.

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.