Events

Oct
19
Sat
IEEE Ottawa Seminar Series on AI and Machine Learning – Sponsored by IEEE Ottawa CS Chapter, ComSoc Chapter, and SP Chapter, jointly with Vitesse- Reskilling
Oct 19 @ 00:07 – 01:07

Date Wednesday, Oct 30, 2019

Location 359 Terry Fox Drive, Kanata, Ontario

Agenda

       11:30 AM – 12:00 PM: Light Lunch and Networking

       12:00 PM – 1:00 PM  : Presentation and Q&A

1:00 PM – 1:30 PM    : Post Presentation Networking

Title of the Talk AI-Powered 5G Networks
& Beyond

Speaker  Hatem Abou-zeid 

Summary

5G Networks are anticipated
to transform modern societies by providing an ultra-reliable, high-speed
communications infrastructure that will connect billions of devices including
vehicles, machines, and sensors. Both the complexity of such networks and the
diversity of application requirements will be unprecedented. This mandates
novel, autonomous network configuration and operation that can anticipate and
react to changes in traffic, topology, and interference conditions to ensure
seamless quality of experience and reliability. In this talk I will discuss
AI-driven networking use-cases elaborating on the practical challenges of
industrial deployments. I will then highlight directions where research is
needed to further expedite and facilitate the development of AI-powered
networks.

Biography

Hatem Abou-zeid is a
Senior 5G Systems Designer at Ericsson Canada where he drives research and
system development for 5G radio access networks. Prior to that he held
industrial positions at CISCO Systems and Bell Labs in addition to postdoctoral
and research assistant affiliations at Queen’s University, Canada. His research
focuses on the application of machine learning in 5G networks with particular
emphasis on anticipatory and adaptive algorithms drawing on methods from
reinforcement learning, spatio-temporal forecasting, deep learning and
stochastic optimization. Dr. Abou-zeid is very passionate about developing
strong industry-university collaborations that foster applied, innovative
research, and he leads multiple academic partnerships on intelligence and
analytics in future networks.

Dec
3
Tue
Advanced semiconductor lasers: Ultra-low operating energy and heterogeneous integration with Si photonics devices @ University of Ottawa, Room 223
Dec 3 @ 13:00 – 14:00

IEEE Photonics Society Distinguished Lecturer Program

Advanced semiconductor lasers:Ultra-low operating energy and heterogeneous integration with Si photonics devices

Shinji Matsuo, NTT Photonics Laboratories, Japan

Abstract: The electrical power consumed in data transmission systems is now hampering efforts to further increase the speed and capacity at various scales, ranging from data centers to microprocessors. Optical interconnects employing an ultralow energy directly modulated lasers will play a key role in reducing the power consumption. Since a laser’s operating energy is proportional to the size of its active volume, developing high-performance lasers with a small cavity is important. For this purpose, we have developed membrane DFB and photonic crystal (PhC) lasers, in which active regions are buried with InP layer. Thanks to the reduction of cavity size and the increase in optical confinement factor, we have achieved extremely small operating energy and demonstrated 4.4-fJ/bit operating energy by employing wavelength-scale PhC cavity. Reduction of the cost is also important issue because huge number of transmitters are required for short distance optical links. For this purpose, Si photonics technology is expected to be a potential solution because it can provide large-scale phonic integrated circuits (PICs), which can reduce the assembly cost compared with transmitters constructed by discrete devices. Therefore, heterogeneous integration of III-V compound semiconductors and Si has attracted much attention. For fabricating these devices, we have developed wafer-scale fabrication procedure that employs regrowth of III-V compound semiconductors on directly bonded thin InP template on SiO2/Si substrate. A key to realize high-quality epitaxial layer is total thickness, which must be below the critical thickness, typically 430 nm. Thus, membrane structure is quite suitable for heterogeneous integration. I will talk about our recent progress, focusing on ultralow-powerconsumption directly modulated lasers and their photonic integrated circuit. I will also describe progress in heterogeneous integration of these lasers and Si photonics devices.

Bio: Dr. Matsuo received a B.E. and M.E. degrees in electrical engineering from Hiroshima University, Hiroshima, Japan, in 1986 and 1988, and the Ph.D. degree in electronics and applied physics from Tokyo Institute of Technology, Tokyo, Japan, in 2008. In 1988, he joined NTT Optoelectronics Laboratories, Atsugi, where he was engaged in research on photonic functional devices using MQW-pin modulators and VCSELs. In 1997, he researched optical networks using WDM technologies at NTT Network Innovation Laboratories, Yokosuka. Since 2000, he has been researching InP-based photonic integrated circuits including fast tunable lasers and photonic crystal lasers at NTT Photonics Laboratories, Atsugi. Dr. Matsuo is a member of the IEEE Photonics Society, Japan Society of Applied Physics and the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan.

Mar
19
Thu
[CANCELLED] Seminar: Drone-assisted Mobile Edge Computing
Mar 19 @ 18:00 – 19:30

NOTE: This event as been cancelled due to COVID-19 precautions

Seminar presented by the IEEE Ottawa Section, Communications Society, Consumer Electronics Society, and
Broadcast Technology Society Joint Chapter (ComSoc/CESoc/BTS), Instrumentation & Measurement
Society Chapter (IMS), Reliability Society and Power Electronics Society Joint Chapter (RS/PELS), IEEE
Ottawa Educational Activities (EA) and Algonquin College IEEE Student Branch:

 

IEEE Ottawa Section is inviting all interested IEEE members and nonmembers to a distinguished Lecture:
Drone-assisted Mobile Edge Computing

By

Nirwan Ansari, Distinguished Professor of Electrical and Computer Engineering at

the New Jersey Institute of Technology (NJIT)

 

DATE:

Thursday, March 19, 2020.

 

TIME:

Refreshments, Registration and Networking: 6:00 p.m.; Seminar: 6:30 p.m. – 7:30 p.m.

PLACE:

Ciena Optophotonics Lab, Room T129, T-Building, School of Advanced Technology, Algonquin College,

1385 Woodroffe Ave., Ottawa, ON Canada K2G 1V8.

 

PARKING:

Parking at Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a machine and display the ticket on your dashboard. Please respect restricted areas.

 

ADMISSION:

Free. Registration required. To ensure a seat, please register by e-mail contacting: Wahab Almuhtadi.

 

MORE INFO:

Ottawa ComSoc/CESoc/BTS Chapter website.

 

Abstract:

In mobile access networks, different types of Internet of Things (IoT) devices (e.g., sensor nodes and smartphones) will generate vast traffic demands, thus dramatically increasing the traffic loads of their connected access nodes, especially in the 5G era. Mobile edge computing enables data collected by IoT devices to be stored in and processed by local fog nodes as well as allows IoT users to access IoT applications via these nodes at the same time. In this case, the communications latency critically affects the response time of IoT user requests. Owing to the dynamic distribution of IoT users, drone base station (DBS), which can be flexibly deployed over hotspot areas, can potentially improve the wireless latency of IoT users by mitigating the heavy traffic loads of macro BSs. Drone-based communications poses two major challenges: 1) DBS should be deployed in suitable areas with heavy traffic demands to serve more users; 2) traffic loads in the network should be allocated among macro BSs and DBSs to avoid instigating traffic congestions. Therefore, we propose a TrAffic Load balancing (TALL) scheme in such drone-assisted fog network to minimize the wireless latency of IoT users. In the scheme, we divide the problem into two sub-problems and design two algorithms to optimize the DBS placement and user association, respectively. Extensive simulations have been set up to validate the performance of TALL.

 

Speaker Bio:

Dr. Nirwan Ansari, Distinguished Professor of Electrical and Computer Engineering at the New Jersey Institute of Technology (NJIT), received his Ph.D. from Purdue University, MSEE from the University of Michigan, and BSEE (summa cum laude with a perfect GPA) from NJIT. He is a Fellow of IEEE and a Fellow of National Academy of Inventors.

He authored Green Mobile Networks: A Networking Perspective (Wiley-IEEE, 2017) with T. Han, and coauthored two other books. He has also (co-)authored more than 600 technical publications. He has guest-edited a number of special issues covering various emerging topics in communications and networking. He has served on the editorial/advisory board of over ten journals including as Associate Editor-in-Chief of IEEE Wireless Communications Magazine. His current research focuses on green communications and networking, cloud computing, droneassisted networking, and various aspects of broadband networks. He was elected to serve in the IEEE Communications Society (ComSoc) Board of Governors as a member-at-large, has chaired some ComSoc technical and steering committees, is current Director of ComSoc Educational Services Board, has been serving in many committees such as the IEEE Fellow Committee, and has been actively organizing numerous IEEE International Conferences/Symposia/Workshops. He is frequently invited to deliver keynote addresses, distinguished lectures, tutorials, and invited talks. Some of his recognitions include several excellence in teaching awards, a few best paper awards, the NCE Excellence in Research Award, several ComSoc TC technical recognition awards, the NJ Inventors Hall of Fame Inventor of the Year Award, the Thomas Alva Edison Patent Award, Purdue University Outstanding Electrical and Computer Engineering Award, the NCE 100 Medal, and designation as a COMSOC Distinguished Lecturer. He has also been granted more than 40 U.S. patents.

May
26
Tue
Photonics North 2020
May 26 @ 08:00 – May 28 @ 17:00

On behalf of the conference organizing committee,
we invite you to the virtual Photonics North Conference on May 26-28,
2020.  In the midst of a global crisis,
we look forward to meeting with all of you, our colleagues, as we carry on with
the work of advancing optical science and engineering. Join us for outstanding
plenary talks from inspirational thought leaders. Join us for the very best
work from respected and established researchers. Join us for talks from
emerging researchers, presenting what is surely the opening work of brilliant,
burgeoning careers.

Photonics and optics are finally seeing widespread adoption and significant growth into new markets. Photonic devices are being applied to sensing, communications, and even quantum computing. High speed fiber optics and highly integrated subsystems are essential to the rollout of 5G systems. There has never been a better time for research, development, and training in photonics and Photonics North is essential for developing and promoting the ecosystem.

 

Conference Chairs

Gord Harling
President and CEO, CMC Microsystems       

P. Scott Carney
The Institute of Optics, University of Rochester​     

Aug
12
Wed
IEEE OTTAWA WEBINAR SERIES ON AI AND MACHINE LEARNING
Aug 12 @ 12:00 – 13:00

Speaker:                Dr : Marin Soljacic, MIT

Date:                      Wednesday
Aug 12th, 2020

Time:                      12:00
noon to 13:00

Title of the talk:       Photonics:
a great testing-ground to develop new AI algorithms for science

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.