Events

Mar
17
Tue
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129
Mar 17 @ 18:00 – 19:30
[CANCELLED] IEEE Ottawa seminar on Microgrid Stability Definitions, Analysis, and Modeling @ Algonquin College, T-Building, Room T129 | Ottawa | Ontario | Canada

NOTE: This event has been cancelled due to COVID-19 precautions

Dear colleagues,

Due to the current situation regarding corrona virus COVID-19, we have to CANCEL our IEEE Ottawa Section Seminar:

“Microgrid Stability Definitions, Analysis, and Modeling”
by Dr. Mostafa Farrokhabadi,
which was scheduled for Tuesday, Mar. 17, 2020, 6:00 p.m., at Algonquin College, 1385 Woodroffe Ave., T-Building, Room T129.

The new date and time for this seminar will be determined and announced when the circumstances allow.

We are sorry for the inconvenience and thank you for your understanding.

Sincerely,

Branislav Djokic

 

TITLE: Microgrid Stability Definitions, Analysis, and Modeling

SPEAKER: Dr. Mostafa Farrokhabadi, Director of Technology at BluWave-ai, Ottawa

DATE:     Tuesday, March 17, 2020.

TIME:     Refreshments, Registration and Networking: 6:00 p.m.; Seminar: 6:30 p.m. – 7:30 p.m.

LOCATION: Ciena Optophotonics Lab, Room T129, T-Building, School of Advanced Technology, Algonquin College, 1385 Woodroffe Ave., Ottawa, ON Canada K2G 1V8.

PARKING: Parking at Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a machine and display the ticket on your dashboard. Please respect restricted areas.

Abstract: A microgrid is defined as a group of Distributed Energy Resources (DERs) and loads that act locally as a single controllable entity and can operate in both grid-connected and islanded modes. Microgrids are considered a critical link in the evolution from vertically integrated bulk power systems to smart decentralized networks, by facilitating the integration of DERs. Entities, such as government agencies, utilities, military bases, and universities around the world are deploying microgrids, and an increasing number of these systems are expected to be developed in the next decade. In general, stability in microgrids has been treated from the perspective of conventional bulk power systems. However, the nature of the stability problem and dynamic performance of a microgrid are considerably different than those of a conventional power system due to intrinsic differences between microgrids and bulk power systems, such as size, feeder types, high share of Renewable Energy Sources (RES), converter-interfaced components, low inertia, measurement devices such as Phase-Locked Loop (PLL), unbalanced operation, etc.

This seminar discusses the findings of the award-winning IEEE PES Task Force on Microgrid Stability Definitions, Analysis, and Modeling, which defines concepts and identifies relevant issues related to stability in microgrids. The seminar presents definitions and classification of microgrid stability, considering pertinent microgrid features such as voltage-frequency dependence, unbalancing, low inertia, and generation intermittency. A few examples will be also presented, highlighting some of the stability classes discussed during the seminar.

Speaker’s Bio: Dr. Mostafa Farrokhabadi is the Senior Director of Technology at BluWave-ai, an internationally award-winning startup offering AI-enabled control and optimization solutions for smart grids. He has more than 8 years of experience in designing mission critical grid solutions for industry and academia, including technical leadership of a $6M international consortium in Electric Grid Modernization, and Smart Grid projects with Hatch and Canadian Solar. Mostafa has authored/co-authored several high-impact technical papers and patents on intelligent control and optimization of renewable-penetrated grids.

Mostafa obtained his PhD in Electrical and Computer Engineering from the University of Waterloo. He has also studied and performed research in Sweden at KTH and Germany at KIT. During the course of his career, Mostafa has received multiple business, research, and teaching awards, including the prestigious University of Waterloo Doctoral Thesis Completion Award and Ottawa’s Forty Under 40.

Mostafa has also led the award-winning IEEE Power and Energy Society Task Force on microgrid stability, an international coalition of 21 researchers from 14 institutions investigating stability issues in microgrids. Currently, he serves as an Associate Editor of the IEEE Transactions on Smart Grid.

Admission: Free. Registration required. Please register by e-mail contacting: ajit.pardasani@ieee.org or branislav@ieee.org.

 

IEEE_MFarrokhabadi_Seminar_Flyer_17Mar2020
May
14
Thu
Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S
May 14 @ 12:00 – 13:00

Presented by IEEE MTT-S Distinguished Microwave Lecturer (DML) Talks:

Transceiver Architectures for Beyond-5G: Challenges and R&D Opportunities, co-organized with SSC-S

By
Dr. Payam Heydari
University of California, Irvine

Date: Thursday, May 14 , 2020

Time: 12:00 PM – 1 PM

Abstract:

The ongoing super-linear growth of world’s population coupled with the worldwide access to internet and the general public’s tendency to use more bandwidth-intensive applications fuel the urgency to enhance wireless infrastructures so as to meet these demands. Consequently, the wireless R&D is headed towards the inception of “Beyond-5G” (e.g., 6G) technology.  This webinar provides a comprehensive overview of challenges and opportunities in designing beyond-5G transceiver architectures capable of achieving high data rates above and beyond 20 Gbps. 

                                                                 Speaker Bio:

Payam Heydari received his Ph.D. degree from the University of Southern California in 2001. He is currently a Full Professor of Electrical Engineering at the University of California, Irvine. Dr. Heydari’s research covers the design of terahertz/millimeter-wave/RF and analog integrated circuits. He is the (co)-author of two books, one book chapter, and more than 150 journal and conference papers. 

Dr. Heydari is an AdCom member of the IEEE Solid-State Circuits Society. Dr. Heydari currently serves an Associate Editor for the IEEE Journal of Solid-State Circuits and the IEEE Solid-State Circuits Letters. He was a member of the Technical Program Committee of the International Solid-State Circuits Conference (ISSCC). Dr. Heydari is an IEEE Fellow for contributions to silicon-based millimeter-wave integrated circuits and systems.

 

                Event is free, but space is limited.  All participants must register in advance. For                                                  Registration: please use the following link



Jun
10
Wed
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION
Jun 10 @ 14:30 – 16:00
ACCELERATING 5G DESIGN INNOVATION THROUGH SIMULATION

Presented by the IEEE Ottawa Section MTT-S/AP-S Chapter & Young Professionals 

Accelerating 5G Design Innovation Through Simulation 

                                                                   By
Dr. Laila Salman 

                                                              Ansys Inc.

                                          Date: Wednesday, June 10, 2020

                                                Time: 2:30 PM – 4:00 PM

                                                                   Location: Online
                       

Abstract

5G connectivity is the next technological revolution. This pervasive, ultrafast compute network will connect billions of devices with data on-demand. It will drive economic expansion in many sectors, spawn new products and services, and transform our lives as we know it. Yet, before 5G can deliver on its promises and quality of service (QoS) metrics, wireless systems designers and engineers must overcome sizable challenges.  

Ansys 5G simulation solutions empower these individuals to solve the complexities impeding device, network and data center design. Ansys 5G simulation solutions provide electromagnetics, semiconductor, electronics cooling and mechanical analysis tools to accurately simulate 5G radio and related technologies. The multi-solution platform leverages high-performance computing that can be deployed across the enterprise, allowing designers and engineering experts to collaborate more effectively. 

This seminar will highlight the following 5G engineering challenges: 

·  End User Equipment  

    o   multi-frequency band antenna integration 

    o   modeling of mm-wave array antennas  

    o   RFI, EMI & Desense Mitigation 

·  Base-Station Antenna Modeling 

    o  Full Communication Analysis in Electrically Large & Complex Environment 

    o  RFI, Data Coverage & ElectroThermal Reliability 

 

Speaker Bio

Dr. Laila Salman received the B.S. and M.S. degrees in electronics and communication engineering from Cairo University, Egypt, and the PhD. Degree in electromagnetic and antenna design from the University of Mississippi. She also worked as a post-doctoral student at the Université de Quebec en Outaouais, Gatineau, Canada till 2010. Her research was on dielectric resonator antennas, wearable antennas, microwave and millimeter-wave circuits and systems, microwave imaging for early detection of breast cancer and scattering from left-handed metamaterials. Dr. Salman joined Ansys Canada Ltd. in August 2010 as a Lead Technical Services Specialist for High Frequency Applications.

Registration: Please use the link in the registration section to sign up for the event.

To join event use the following link.

Jul
28
Tue
Role of the Smart Grid in Facilitating the Integration of Renewables
Jul 28 @ 18:30 – 19:30
Role of the Smart Grid in Facilitating the Integration of Renewables

Webinar: Role of the Smart Grid in Facilitating the Integration of Renewables

Speaker: Prof. Dr. Saifur Rahman, Director, Virginia Tech Advanced Research Institute, USA, IEEE Power & Energy Society (PES) President 2018-2019, IEEE PES Distinguished Lecturer

Date/Time: Tuesday, July 28, 2020, 6:30 pm – 7:30 p.m. EDT

Admission: Free, but registration is required: https://events.vtools.ieee.org/m/234594

For more details, please visit: https://www.ewh.ieee.org/soc/pes/ottawa

Abstract – With the focus on environmental sustainability and energy security, power system planners are looking at renewable energy as supplements and alternatives. But such generation sources have their own challenges – primarily intermittency.  It is expected that the smart grid – due to its inherent communication, sensing and control capabilities – will have the ability to manage the load, storage and generation assets (including renewables) in the power grid to enable a large-scale integration of distributed generation. In a smart grid, information about the state of the grid and its components can be exchanged quickly over long distances and complex networks. It will therefore be possible to have the integration of sustainable energy sources, such as wind, solar, off-shore electricity, etc. for smoother system operation. But in order for this to be possible, the electric utility will have to evolve, and change their ways of operation to become an intelligent provider of these services. This lecture introduces the operational characteristics of renewable energy sources, and various aspects of the smart grid – technology, standards and regulations. It also addresses the interplay among distributed generation, storage and conventional generation to provide an efficient operational strategy in the context of the smart grid.

Aug
12
Wed
The Smart City Building Blocks & Their Synergy with Smart Villages
Aug 12 @ 18:30 – 19:30
The Smart City Building Blocks & Their Synergy with Smart Villages

ADMISSION: Free, but the registration in advance is required.

REGISTRATION: https://events.vtools.ieee.org/m/236964.

Abstract – A smart city relies on widely distributed smart devices to monitor the urban environment in real-time, collects information for intelligent decision making, and facilitates various services to improve the quality of urban living. The distributed network of intelligent sensor nodes, as well as data centers/clouds where sensor data are stored and shared, constitutes a smart city infrastructure. Smart cities address urban challenges such as pollution, energy efficiency, security, parking, traffic, transportation, and others by utilizing advanced technologies in data gathering and communications interconnectivity via the Internet. It provides real time and remote monitoring for different aspects of data management in areas such as transportation, communication, video surveillance, and sensors distributed throughout the city. Simultaneously, the Smart City building blocks like education, telemedicine, health care, IT applications, pollution management, etc. can be deployed in the IEEE Smart Village initiative to have a greater impact on the rural population throughout the world. through reliable electricity and internet connectivity.

Speaker Bio – Prof. Dr. Saifur Rahman is the founding director of the Advanced Research Institute (www.ari.vt.edu) at Virginia Tech, USA, where he is the Joseph R. Loring Professor of Electrical and Computer Engineering. He also directs the Center for Energy and the Global Environment (www.ceage.vt.edu). He is a Life Fellow of the IEEE and an IEEE Millennium Medal winner. He was the founding Editor-in-Chief of the IEEE Electrification Magazine and the IEEE Transactions on Sustainable Energy. In 2006, he served on the IEEE Board of Directors as the Vice President for Publications. He is a Distinguished Lecturer for the IEEE Power & Energy Society (PES) and has lectured on renewable energy, energy efficiency, smart grid, electric power system operation and planning, etc. in over 30 countries. He was IEEE Power and Energy Society President 2018-2019 and is now a candidate for IEEE President-Elect 2021.

He chaired the US National Science Foundation Advisory Committee for International Science and Engineering, 2010-2013. He conducted several energy efficiency projects for Duke Energy, Tokyo Electric Power Company, US National Science Foundation, US Department of Defense, State of Virginia and US Department of Energy.

For any additional information, please contact: ajit.pardasani@ieee.org or branislav@ieee.org

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.