Events

Oct
19
Sat
IEEE Ottawa Seminar Series on AI and Machine Learning – Sponsored by IEEE Ottawa CS Chapter, ComSoc Chapter, and SP Chapter, jointly with Vitesse- Reskilling
Oct 19 @ 00:07 – 01:07

Date Wednesday, Oct 30, 2019

Location 359 Terry Fox Drive, Kanata, Ontario

Agenda

       11:30 AM – 12:00 PM: Light Lunch and Networking

       12:00 PM – 1:00 PM  : Presentation and Q&A

1:00 PM – 1:30 PM    : Post Presentation Networking

Title of the Talk AI-Powered 5G Networks
& Beyond

Speaker  Hatem Abou-zeid 

Summary

5G Networks are anticipated
to transform modern societies by providing an ultra-reliable, high-speed
communications infrastructure that will connect billions of devices including
vehicles, machines, and sensors. Both the complexity of such networks and the
diversity of application requirements will be unprecedented. This mandates
novel, autonomous network configuration and operation that can anticipate and
react to changes in traffic, topology, and interference conditions to ensure
seamless quality of experience and reliability. In this talk I will discuss
AI-driven networking use-cases elaborating on the practical challenges of
industrial deployments. I will then highlight directions where research is
needed to further expedite and facilitate the development of AI-powered
networks.

Biography

Hatem Abou-zeid is a
Senior 5G Systems Designer at Ericsson Canada where he drives research and
system development for 5G radio access networks. Prior to that he held
industrial positions at CISCO Systems and Bell Labs in addition to postdoctoral
and research assistant affiliations at Queen’s University, Canada. His research
focuses on the application of machine learning in 5G networks with particular
emphasis on anticipatory and adaptive algorithms drawing on methods from
reinforcement learning, spatio-temporal forecasting, deep learning and
stochastic optimization. Dr. Abou-zeid is very passionate about developing
strong industry-university collaborations that foster applied, innovative
research, and he leads multiple academic partnerships on intelligence and
analytics in future networks.

Nov
24
Sun
Modern Day Applications of Power Electronics – Who Can Benefit?
Nov 24 @ 00:46 – 01:46
Modern Day Applications of Power Electronics – Who Can Benefit?

AbstractApplication of power electronics is widespread in everyday
life. Some applications are considered as “nice to have it;” in other cases,
they are essential. This presentation discusses a wide variety of daily-used
applications around the world. Also covered is an advanced topic, such as SMART
Controller that today’s grid requires for voltage regulation, power factor
regulation, unbalance voltage/current regulation, harmonic elimination and so
on. A SMART Controller that is based on functional requirements and
cost-effective solutions is derived from utilizing the best features of all the
technical concepts that are developed until now. Final year students of
electrical engineering undergraduate curriculum, post graduate students,
researchers, academicians and utility engineers will benefit from attending
this course. The participants will hear from an expert who actually designed
and commissioned a few utility-grade SMART controllers since their inception in
the 1990s.

 

Speaker’s
Bio

Kalyan Sen, a
Fulbright Scholar, is the Chief Technology Officer of Sen Engineering
Solutions, Inc. (
www.sentransformer.com) that specializes in
developing SMART power flow controllers—a functional requirements-based and
cost-effective solution. He
received
BEE,
MSEE, and PhD degrees, all in Electrical Engineering, from Jadavpur University,
India, Tuskegee University, USA, and Worcester Polytechnic Institute, USA,
respectively. He also received an MBA from Robert Morris University, USA.

 

Dr.
Sen spent more than 30 years in academia and industry and became a Westinghouse
Fellow Engineer. He was a key member of the Flexible Alternating Current
Transmission Systems (FACTS) development team at the Westinghouse Science &
Technology Center in Pittsburgh. He contributed in all aspects (conception,
simulation, design, and commissioning) of FACTS projects at Westinghouse. He
conceived some of the basic concepts in FACTS technology. He has authored or
coauthored more than 25 peer-reviewed publications, 8 issued patents, a book
and 4 book chapters in the areas of FACTS and power electronics. He is the
coauthor of the book titled, Introduction
to FACTS Controllers: Theory, Modeling, and Applications
, IEEE Press and
John Wiley & Sons, Inc. 2009, which is also published in Chinese and Indian
paperback editions. He is the co-inventor of Sen Transformer.

Nov
28
Thu
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College
Nov 28 @ 18:00 – 20:00
Modern Day Applications of Power Electronics – Who Can Benefit? @ Room P208, Algonquin College | Ottawa | Ontario | Canada

Seminar by IEEE Ottawa Section, PELS, SSIT, RS-PEL, PES, Education Activities, Algonquin College IEEE Student Branch, ComSoc, CESoc, and BTS Ottawa Joint Chapter.

The IEEE Ottawa Section is inviting all interested IEEE members and nonmembers to a seminar

Modern Day Applications of Power Electronics – Who Can Benefit?

By 

Kalyan K. Sen

Sen Engineering Solutions, Inc.

DATE:

November 28th 2019

TIME:
Refreshments, Registration and Networking:
18:00;
Seminar:
18:30 – 20:00.

PLACE:
Algonquin College, Room P208, 1385 Woodroffe Ave., Ottawa.

PARKING:

Parking in Lots 8 and 9 after 5 p.m. is $5 flat rate, pay at a
machine and display the ticket on your dashboard.

 

ADMISSION:

Free. Registration required.

Please register by e-mail contacting: ottawapels@gmail.com

 

Abstract:

Application of power electronics is widespread in everyday life. Some applications are considered as “nice to have it;” in other cases, they are essential. This presentation discusses a wide variety of daily-used applications around the world. Also covered is an advanced topic, such as SMART Controller that today’s grid requires for voltage regulation, power factor regulation, unbalance voltage/current regulation, harmonic elimination and so on. A SMART Controller that is based on functional requirements and cost-effective solutions is derived from utilizing the best features of all the technical concepts that are developed until now. Final year students of electrical engineering undergraduate curriculum, post graduate students, researchers, academicians and utility engineers will benefit from attending this course. The participantswill hear from an expert who actually designed and commissioned a fewutility-grade SMART controllers since their inception in the 1990s.

 

Modern Day Applications of Power Electronics – Who Can Benefit
Dec
3
Tue
Advanced semiconductor lasers: Ultra-low operating energy and heterogeneous integration with Si photonics devices @ University of Ottawa, Room 223
Dec 3 @ 13:00 – 14:00

IEEE Photonics Society Distinguished Lecturer Program

Advanced semiconductor lasers:Ultra-low operating energy and heterogeneous integration with Si photonics devices

Shinji Matsuo, NTT Photonics Laboratories, Japan

Abstract: The electrical power consumed in data transmission systems is now hampering efforts to further increase the speed and capacity at various scales, ranging from data centers to microprocessors. Optical interconnects employing an ultralow energy directly modulated lasers will play a key role in reducing the power consumption. Since a laser’s operating energy is proportional to the size of its active volume, developing high-performance lasers with a small cavity is important. For this purpose, we have developed membrane DFB and photonic crystal (PhC) lasers, in which active regions are buried with InP layer. Thanks to the reduction of cavity size and the increase in optical confinement factor, we have achieved extremely small operating energy and demonstrated 4.4-fJ/bit operating energy by employing wavelength-scale PhC cavity. Reduction of the cost is also important issue because huge number of transmitters are required for short distance optical links. For this purpose, Si photonics technology is expected to be a potential solution because it can provide large-scale phonic integrated circuits (PICs), which can reduce the assembly cost compared with transmitters constructed by discrete devices. Therefore, heterogeneous integration of III-V compound semiconductors and Si has attracted much attention. For fabricating these devices, we have developed wafer-scale fabrication procedure that employs regrowth of III-V compound semiconductors on directly bonded thin InP template on SiO2/Si substrate. A key to realize high-quality epitaxial layer is total thickness, which must be below the critical thickness, typically 430 nm. Thus, membrane structure is quite suitable for heterogeneous integration. I will talk about our recent progress, focusing on ultralow-powerconsumption directly modulated lasers and their photonic integrated circuit. I will also describe progress in heterogeneous integration of these lasers and Si photonics devices.

Bio: Dr. Matsuo received a B.E. and M.E. degrees in electrical engineering from Hiroshima University, Hiroshima, Japan, in 1986 and 1988, and the Ph.D. degree in electronics and applied physics from Tokyo Institute of Technology, Tokyo, Japan, in 2008. In 1988, he joined NTT Optoelectronics Laboratories, Atsugi, where he was engaged in research on photonic functional devices using MQW-pin modulators and VCSELs. In 1997, he researched optical networks using WDM technologies at NTT Network Innovation Laboratories, Yokosuka. Since 2000, he has been researching InP-based photonic integrated circuits including fast tunable lasers and photonic crystal lasers at NTT Photonics Laboratories, Atsugi. Dr. Matsuo is a member of the IEEE Photonics Society, Japan Society of Applied Physics and the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan.

Feb
27
Thu
Clarifying the Path to becoming a P.Eng. with Representatives from Professional Engineers Ontario
Feb 27 @ 18:00 – 19:30
Clarifying the Path to becoming a P.Eng. with Representatives from Professional Engineers Ontario

A joint event by IEEE YP & WIE Ottawa!

REGISTER NOW: https://forms.gle/ymzcQyp24vNJhx8K8

WHO? Representatives from Professional Engineers Ontario
WHAT? Clarifying the Path to becoming a P.Eng.

If
you are an engineering undergraduate or post-graduate student, or a
recent graduate starting out your engineering career, then this seminar
might be for you. In it you will learn:

  • What is PEO?
  • What engineering experience is PEO looking for once I graduate?
  • I have international engineering education and experience; how is that evaluated by PEO?
  • How is my engineering experience evaluated by PEO?
  • How do I prepare my Experience Record?
  • What is the PPE?
  • What is the EIT Program and the Student Membership program?

WHERE?
Carleton University,
Minto Centre (MC) 5050
Paid Parking Available – carleton.ca/parking/parking-map/

WHEN?
Thursday, February 27th, 2020
6:00PM to 7:30PM

Free for all – You MUST pre-register!
REGISTER NOW: https://forms.gle/ymzcQyp24vNJhx8K8

Careers

Publications

Join IEEE or a Society

Member Services

IEEE Ottawa Section Logo

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.