Events

Jun
2
Sun
IEEE Ottawa Robotics Competition 2019 @ Earl of March Secondary School
Jun 2 @ 08:00 – 17:00

Arduinos, 3D printing, Lego Mindstorms and displays, submarine
robots, and AI, where can you find all this? All of this and MUCH MORE will be at the IEEE Ottawa Robotics
Competition (ORC), Ottawa’s largest robotics competition for grade 5 to 12
students. The ORC is taking place on Sunday,
June 2nd
at Earl of March
Secondary School
. Best times to show up are between 10:30 am to 12:30 pm and 1:30 pm to 4 pm. The ORC is completely
open to the public, so invite your friends and family too!

Check out previous competitions at https://youtube.com/user/ieeeorc/videos.

If you have any questions, please feel free to email us at orcinfo@ieeeottawa.ca.

Jun
26
Wed
IEEE Ottawa Seminar Series on AI and Machine Learning – Application of Deep Learning for Medical Image Analysis
Jun 26 @ 11:30 – 13:30

IEEE Ottawa Seminar Series on AI and Machine Learning

Hosted by IEEE Ottawa PHO Chapter, EMBS Chapter, CS Chapter, and SP Chapter Jointly with Vitesse Reskilling

Application of
Deep Learning for Medical Image Analysis

Fatemeh Zabihollahy

Carleton University

—————————————————————-

Wednesday, June 26, 2019

359 Terry Fox Drive, Suite 200, Kanata, Ontario

11:30 – 13:30

—————————————————————-

Medical imaging, (e.g., computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), mammography, ultrasound,
X-ray) has advanced at a rapid speed over last decades. Currently, the medical
image interpretation is mostly performed by human experts, which is a tedious
task and subject to high inter-operator variability. Deep learning is providing
exciting solutions for medical image analysis problems. Recent advances in deep
learning have helped to identify, classify, and quantify patterns in medical
images. In this seminar, we introduce the principles and methods of deep
learning concepts, particularly convolutional neural network (CNN). We show how
CNN operates. I will describe several interesting applications of deep learning
for medical image analysis, including my recent works on segmenting myocardial
scar (injured) tissue in the heart, prostate tumor detection, and kidney lesion
localization in 3D MRI and CT images.

Biography

Fatemeh Zabihollahy is currently
a Ph.D. candidate at Carleton University. She obtained her MASc (2016) and BASc
(2001) both in Biomedical Engineering from Carleton University, Canada and
Shahid Beheshti University, Iran, respectively. She worked in the medical
devices industry as an R&D engineer for ten years. Her research interest is
in the field of application of deep learning techniques for medical image
analysis.

—————————————————————-

Event
is free, but space is limited.  All
participants must register in advance.   

Please
follow the link to register

https://ieeeottawaaiml2019jun26.eventbrite.ca

—————————————————————-

For more information, please contact: Kexing Liu kexing.liu@ieee.org

Sep
9
Mon
The dedication of the IEEE engineering milestone “First Search and Rescue Using Satellite Technology, 1982” @ Canada Aviation and Space Museum
Sep 9 @ 14:00 – 15:30

The Ottawa Section of the Institute of Electrical and Electronics Engineers (IEEE) and the Canada Aviation and Space Museum cordially invite you to:

The dedication of the IEEE engineering milestone “First Search and Rescue Using Satellite Technology, 1982”

Join us at the museum for this special event, where we will also celebrate space-related technical achievements as part of the commemoration of the fiftieth anniversary of humans landing on the Moon.

WHO:
The keynote speaker at the dedication ceremony is renowned Canadian astronaut, Dr. Robert Thirsk. Special guests include IEEE President, Dr. José Moura, and IEEE Canada President, Dr. Maike Luiken.

WHAT:
A dedication and unveiling ceremony for two plaques (English and French), recognizing the historical significance of this satellite technology application.

WHEN:
Monday, September 9, 2019 at 2 p.m.

WHERE:
The grounds of the Canada Aviation and Space Museum, 11 Aviation Parkway, Ottawa, ON.

AGENDA:

2 p.m. – 2:45 p.m.:

  • Opening remarks and welcome by IEEE Ottawa Section Chair, Dr. Winnie Ye, and IEEE History Committee Chair, Dr. Branislav Djokic
  • Welcome address by the Director General of the Canada Aviation and Space Museum, Mr. Chris Kitzan
  • Historical perspective on this IEEE milestone by Dr. Michael A. Stott
  • Welcome address by IEEE Canada President, Dr. Maike Luiken, and IEEE President, Dr. José Moura
  • Keynote speech by Dr. Robert Thirsk
  • Unveiling of the plaques by Dr. Robert Thirsk
  • Closing remarks by IEEE Ottawa Section Vice-Chair, Mr. Ajit Pardasani

2:45 p.m. – 3:30 p.m.:

  • Light refreshments and networking

RSVP:

Ajit Pardasani at Ajit.Pardasani@ieee.org by September 3, 2019.

 

Invitation-Dedication-ceremony.FINAL_

Sep
18
Wed
Open Source Development Forum – Wed. 18-September @ Innovation Centre at Bayview yards
Sep 18 @ 08:30 – 17:30
Open Source Development Forum - Wed. 18-September @ Innovation Centre at Bayview yards | Ottawa | Ontario | Canada

The inaugural OSDforum will take place in Ottawa this September 18. It is of interest to System architects, software designers, hardware designers and researchers from government, industry and academia.

RISC-V is the 5th generation of the Reduced Instruction Set Computer (RISC-V) Instruction-Set Architecture (ISA), the OpenHW Group is a not-for-profit global organisation aiming to boost the adoption of open-source processors by providing a platform for collaboration, creating a focal point for ecosystem development, and offering open-source IP for processor cores.

Don’t miss out the opportunity to join this exciting new development platform and get your own RISC-V development board to keep. All this while learning from leading industry and academic experts focused on IoT, Edge and Machine Learning development that leverage open source SW and HW.

Space is limited and we have all indications that the event will sell out. Register today.

Oct
11
Fri
Advanced optical sources for spectrally efficient photonic systems – Liam Barry, Dublin City University @ Advanced Research Complex (ARC), uOttawa
Oct 11 @ 09:00 – 10:30

Advanced Optical Sources for Spectrally Efficient Photonic Systems
Liam Barry,
Dublin City University

 

Abstract

The continuing growth in demand for bandwidth (from residential and business users), necessitates significant research into new advanced technologies that will be employed in future broadband communication systems. Two specific technologies which are becoming increasingly important for future photonic
systems are wavelength tunable lasers and optical frequency combs. Although these topics have been studied for over two decades their significance for the development of future ultra-high capacity photonic systems has only recently been fully understood. Wavelength tunable lasers are currently becoming the
norm in optical communication systems because of their flexibility and ability to work on any wavelength. However, as their operating principles are different to standard single mode lasers they can effect how future systems will operate.

For example as optical transmission systems move towards more coherent transmission (where the data is carried using both the intensity and phase of the optical carrier), the phase noise in these tunable lasers will become increasingly important. Optical frequency combs also have many applications for
future photonics systems, and for telecommunications they can be used to obtain the highest spectral efficiency in optical transmission systems by employing the technology of optical frequency division multiplexing (OFDM) that has been widely employed to increase spectral efficiency in wireless systems. Wavelength tunable lasers and optical frequency combs are thus topics at the leading edge of current photonics systems research, and their detailed understanding promises new applications in all-optical signal processing, optical sensing and metrology, and specifically telecommunications. This talk will focus on the development and characterization of various wavelength tunable lasers and optical frequency combs, and then outline how these sources can be employed for developing optical transmission systems and networks which make the best use of available optical spectrum.

Bio

Liam Barry received his BE (Electronic Engineering) and MEngSc (Optical Communications) from University College Dublin and his PhD from the University of Rennes. His main research interests are: all-optical signal processing, optical pulse generation and characterization, hybrid radio/fibre communication
systems, wavelength tuneable lasers for reconfigurable optical networks, and optical performance monitoring. He has worked as a Research Engineer in the Optical Systems Department of France Telecom’s Research Laboratories (now known as Orange Labs), and a Research Fellow at the Applied Optics Centre in Auckland University. He is currently a Full Professor in the School of Electronic Engineering at Dublin City University, establishing the Radio and Optical Communications Laboratory, and is a Principal Investigator for Science Foundation Ireland. He has published over 500 articles in internationally peer reviewed journals and conferences, holds 9 patents in the area of optoelectronics, and has co-founded two companies in the photonics sector.

 

IEEE Ottawa Section Logo

© Copyright 2020 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.