Current Applied Research in Machine Learning: Medical Abstracts and Digital Games

Stan Matwin
School of Information Technology and Engineering, University of Ottawa

stan@site.uottawa.ca

joint work with, D. Inkpen, J. Sayyad Shirabad, K. White, J. Su, J. Huang, Y. Ma, W. Elazmeh, O. Frunza
Overview

- Digital-games based learning
- Use of machine learning
- Challenges
- Classification of medical abstract
- Use of machine learning
- Challenges
- Commonalities in challenges
Digital Game Based Learning

- Intersection of Digital Games and E-learning.
- Uses techniques from the interactive entertainment industry to make computer-based training appealing to the end-learner.
- Chances are four to one that an employee under the age of 34 has been playing video games since their teenage years [Beck & Wade 04].
An Auditor Certification Game
Player Decision Through the Game

- What question to ask based on:
 - Given answers
 - Auditee character’s body language
 - Environmental observations
 - General experience in auditing task
The problem

- We are interested in the use of digital games for the purpose of testing knowledge of an examinee.
- What makes a person an expert is not a crisply defined concept.
- In a typical DGBL scenario there are many gameplay patterns that could be considered expert behaviour.
Solution

- Cast the problem as a **classifier learning problem**
- Initial training phase:
 - Experts and non-experts will play games and submit their game logs (GL).
 - The gameplay analysis system will learn profiles of expert and non-expert (auditors) by learning models from the repository of stored GLs.
Solution (Continued)

- Production phase:
 - Submit a GL to the gameplay analysis system.
 - The system will classify the GL (expert/non-expert) and generate a report.
 - The instructional designer will receive the report and can accept it or further review it.
 - The GL, with its corresponding expert or non-expert label, is then added to the repository of GLs.
Learning the Profiles

- Deciding as to what information in the game logs should be present in an example e.g. what questions were asked
- Encoding the example and creating other supporting input needed by the algorithm e.g. a Boolean variable for each question.
- Generating the model from the example using a classifier learning algorithm e.g. Decision Tree learner
Generating the Feedback

- The learned model (profile) needs to be explainable e.g. c4.5 decision tree (Quinlan 1993), or rules generated by a rule learner such as Ripper (Cohen 1995).
- The feedback depends on the algorithm used
Observation

- There are many fewer experts in real word than non-experts
 - Generate synthetic expert gameplays
- Not all events e.g. questions are created equally
 - We will increase expressiveness and generalization power of the learned models by using additional meta data about the events
- Meta data examples:
 - Open, closed, challenging, factual
Challenges

- very little data to learn from
- data is imbalanced
- explainability of results a must
Classifying medical abstracts

- Systematic Reviews - Trialstat
- Task fits with text classification, so classifier learning is a possible solution
- Embedding Machine Intelligence for Systematic Reviews (EMISAR)
Systematic reviews

- A big industry
- Time and personnel consuming, expensive
- A knowledge-based process
- Needs tools
Our solution

Initial database

SRS-Web interface

Relevant docs

Non-relevant docs

Compare and correct

Current result

SRS-Web interface

Relevant docs

Non-relevant docs

EMISAR

Rule set

SQL query

Data Mining (ATC) subsystem

Medline

SRS update on future data

Person 1

Person 2

Data Mining (ATC) subsystem

Ruleset

EMISAR

Current result

SRS update on future data
Challenges

- Imbalanced data
- Noise in the data
- Reviews are heterogeneous
- Very high recall required
- What makes satisfactory precision?
- Cohen’s WSS measure
Commonalities

- Need to understand the application well
- Imbalanced data
- Embedded solution
- What is the right performance measure?
Future Work

- Alternative algorithms including the capturing unique features of the system we embed in
- Finding the right classifier
- Use of transduction/co-training
- Active learning
Thank you