Data Mining and Knowledge Discovery in Healthcare and Medicine

Bijan Raahemi, Ph.D., P.Eng, SMIEEE

Associate Professor Telfer School of Management and School of Electrical Engineering and Computer Science **University of Ottawa**

April 30, 2014

Agenda

- Data Mining
- Data Mining in Healthcare
- Research 1:
 - Identifying High-cost Patients using Data Mining Techniques and a Small Set of Non-trivial Attributes
- Research 2:
 - Brain-based Biomarkers for Depression Diagnosis
- Questions

Data Flood

Large amount of Data are being produced

- Retail industry
- Bank, business transactions
- Telecom industry, Mobile phone services
- Web, text, and e-commerce
 - Google searches Billions of pages, hundreds of TB
- Scientific data: astronomy, biology
- Healthcare

0

- Data is growing at a phenomenal rate
 - 90% of data generated in the last 2 years

DATA MINING UNCOVER HIDDEN INFORMATION

Data Mining is the exploration and analysis of a large quantities of data in order to discover meaningful patterns and rules.

process of identifying non-trivial, valid, novel, potentially useful, and understandable patterns in data.

Finding hidden information in a database

Related Fields

Related Fields (cont'd)

Data Mining Techniques

- Classification : predefined groups
- Clustering grouping data into categories with similar attributes. No predefined groups
- Association Rules (Affinity Grouping) e.g. : people who buy product X, often buy product Y with probability Z%
- Estimation e.g. : household income in a specific area
- Prediction e.g. : predict stock market
- Description and Profiling (Summarization) e.g. : "more men study engineering than women"

Applications of Data Mining

- Business:
- Customer profiling/Segmentation
- Target marketing
- Market-Basket Analysis, Recommendation Program
- Retention, Churn and hazard Analysis
- Credit Risk
- Fraud Detection
- Industries span a wide range

Banking, telecom, retails sales, manufacturing, sports/entertainment

Applications of Data Mining (cont'd)

• Web:

search engines, bots

Science

astronomy, bioinformatics, Genetics

Government

law enforcement, profiling tax cheaters, counter terrorism

Applications of DM in Healthcare

(a) Clinical Medicine

Using ANN on ECG for diagnosis AMI

(b) Public Health

- Detection of disease outbreaks and clustering patterns
- Prediction of SARS epidemics, its diagnosis and outcomes

(c) Policy/Planning

- Cost prediction in diseased or in general population
- Analyzing capacity problems using disease/ personal attributes

(d) Text mining

Mining of medical literature or clinical data repositories

Research 1

Identifying High-cost Patients in General Population using Data Mining Techniques and a Small Set of Non-trivial Attributes

Seyed A. Izad Shenas.1, Bijan Raahemi.2, Craig Kuziemsky.2 1.M.D., M.Sc. Health Systems, 2.Associate professors, University of Ottawa KDD lab, University of Ottawa

Motivation

Rising health expenditure

US spent >\$1T (14% GDP) in 1997, and \$2.5T (17% GDP) in 2009 (CMS 2011, CDC 2009); Canada spent 11-12% GDP on health during 2008-2010 period (CIHI 2010)

Increasing cost of chronic diseases

75% of all costs goes to chronic diseases (DeVol & Bedroussian 2007; CDC 2009; CIHI 2010)

Aging population

Existing methods

Mostly oriented to statistical modeling of disease-specific costs (Concaro 2009; Weinstein 2009; Khan 2006; Farley 2006)

Unique features of MEPS Survey database

Research Objectives

- Build *predictive models* including Decision Tree (DT) and Artificial Neural Network (ANN) to identify high-cost/lowcost patients.
- 2. Evaluate *the accuracy* of the predictive models.
- 3. Identify the *small set of non-trivial attributes* which can reasonably predict the high-cost population.

Methodology (based on CRISP-DM process model)

Research Methodology

- Quantitative Modeling Tools **IBM SPSS Modeler 14.1** 0 **IBM SPSS Statistics** 0 Minitab 16 0 **MS** Access 0 Attribute selection Record partitioning / balancing
 - Evaluation

The Dataset Medical Expenditure Panel Survey (MEPS)

- Conducted by the American Agency for Healthcare Research and Quality (AHRQ)
- A panel/year, 5 interview rounds
- 30,000 records/year
- Household Component: 1600-1800 attributes
- HC 2006-2008: >90,000 records
- Released in ASCII and SAS file
- Available at <u>http://meps.ahrq.gov/mepsweb/</u>

Household Component Includes:

- demographics
- health status and health conditions,
- medical events by type (hospital including inpatient, outpatient, and ER; office-based; dental; home health; prescribed medications;
- other events including glasses, ambulance, equipment
- date and other details of an event
- charges and payments by source for each event
- employment profile,
- health insurance profile,
- income,
- access to care,
- level of satisfaction

Data Preparation: Targets

TOTEXP1 (current yr)

Percentile	Expenditures (\$)	Expenditures (%)
Top 5%	59,575,116	45
Top 10%	80,914,106	61
Top 20%	104,156,078	78
All Records (100%)	133,147,351	100

TOTEXP2 (next yr)

Percentile	Expenditures (\$)	Expenditures (%)
Top 5%	67,365,197	48
Top 10%	88,896,390	64
Top 20%	113,365,014	81
All Records (100%)	140,149,629	100

Target Title	Target Year	High-cost Threshold	
TOTEXP1-95	Current Year	> 95 Percentile	
TOTEXP1-90	Current Year	> 90 Percentile	
TOTEXP1-80	Current Year	> 80 Percentile	
TOTEXP2-95	Next Year	> 95 Percentile	
TOTEXP2-90	Next Year	> 90 Percentile	
TOTEXP2-80	Next Year	> 80 Percentile	

▶ 6 targets

Building Models

Classification

- All 5 modules (39 attributes)
- All 5 modules (39 attributes)
- Each module separately
- Combinations of modules

DT / ANN DT C5.0 / CHAID CHAID

Clustering

K-Means on top attributes

K-MEANS

Performance evaluation

DT / ANN

- Sensitivity (Sn)
- Specificity (Sp)
- Correctness accuracy
- G-Mean (trade-off)
- Area under ROC curve (AUC)

K-Means Clustering

Silhouette measure

 $\frac{TP}{TP + FN}$ $\frac{TN}{TN + FP}$ $\frac{TP + TN}{TP + FN + TN + FP}$ $\sqrt{Sn * Sp}$

Results Performance measures

- High accuracy comes from Sp not Sn.
- AUC / G-mean are better trading-off Sp vs. Sn.

Results C5.0 / CHAID Models

Demographics

67.0 69.3 ccuracy	0.784	56 62	68 70	62 66	
69.3 ccuracy	0.717	62	70	66	
ccuracy					
ccuracy					
	AUC	ST	SP	G-MEAN	
75.8	0.772	69	76	72	
73.8	0.789	72	74	73	
ccuracy	AUC	ST	SP	G-MEAN	
70.6	0.787	65	71	68	
70.6	0.743	68	71	70	
PrioC					
ccuracy	AUC	ST	SP	G-MEAN	
77.3	0.799	61	78	69	
75.2	0.772	67	76	71	
Visits					
ccuracy	AUC	ST	SP	G-MEAN	
91.9	0.765	67	93	79	
88.3	0.944	87	88	87	
88.5	0.954	90	88	89	
	Ccuracy 75.8 73.8 Ccuracy 70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6	Ccuracy AUC 75.8 0.772 73.8 0.789 Ccuracy AUC 70.6 0.787 70.6 0.743 Ccuracy AUC 77.3 0.799 75.2 0.772 Ccuracy AUC 91.9 0.765 88.3 0.944 88.5 0.954	Couracy AUC ST 75.8 0.772 69 73.8 0.789 72 73.8 0.789 72 Couracy AUC ST 70.6 0.787 65 70.6 0.743 68 Couracy AUC ST 77.3 0.799 61 75.2 0.772 67 Couracy AUC ST 91.9 0.765 67 88.3 0.944 87 88.5 0.954 90	CcuracyAUCSTSP75.80.772697673.80.7897274CcuracyAUCSTSP70.60.787657170.60.743687170.60.743687170.60.743687177.30.799617875.20.7726776CcuracyAUCSTSP91.90.765679388.30.944878888.50.9549088	

CHAID: Combination of Attribute

	Accuracy	G-Mean	AUC
DHealth	78 (74)*	74 (74)	0.804 (0.801)
DPreventive	69 (69)	71 (70)	0.752 (0.763)
DPrioC	75 (71)	71 (70)	0.784 (0.768)
Dvisits	87 (88)	86 (87)	0.937 (0.944)

*Numbers in parentheses show the performance Measures for the combination models when they use all attributes (large set).

DHealt	:h	DPrio	C	ALL
RTHLTH	45	PCCOUN	T 81	PCCOUNT
AGE	28	AGE	12	CHOLCK
ANYLIM	22	SEX	4	IPDIS
SEX	5	REGION	3	RTHLTH
				овтот
DPreven	DPreventive DVisits		ts	AGE
CHOLCK	47	IPDIS	47	ANYLIM
AGE	32	овтот	45	BOWEL
BOWEL	15	AGE	8	SEX
SEX	5	SEX	1	REGION

Recommendations

Health planners

- Survey design
- Disease management programs

Policy makers

- Resource allocation
- Policy evaluation

Insurance firms

- Customization of insurance plans
- Client screening

Brain-based Biomarkers for Depression Diagnosis

F. Alazab, B. Raahemi KDD lab, University of Ottawa

Introduction

- Electroencephalogram (<u>EEG</u>): A record of the electric activity from the scalp, obtained with the aid of an array of electrodes.
- EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.
- EEG is used in <u>cognitive science</u>, <u>cognitive psychology</u>, and <u>psychophysiological</u> research

28 Probes

EEG for Depression Diagnoses

Input Data

- EEG signals record the electric activities of the brain by attaching 28 electrodes on the scalp to collect four frequency bands (Alpha, Beta, Delta and Theta) from Mastiod and Cz sites, during the eyes closed EC and eyes opened EO.
- In this study, we focused on analysing the four bands collected from 96 persons, 43 healthy controls and 53 depressed patient before medication.

Output

Determine whether a patient is depressed based on the input of EEG signals.

Objectives

- Applying **Data Mining** methods to:
 - <u>Reduce Features</u> by identifying the most significant signals
 - Map Features by discriminating them based on the class
 - Build a <u>Predictive Model</u> to identify depressed patients based on their EGG signals

Methodology (based on CRISP-DM process model)

Data Understanding

Mastoid Bone

- 4 frequency Bands, 28 features per band, and a target class for Eyes Opened and Eyes Closed status.
 - Alpha at (8-11 Hz) , (11-14 Hz) and the total of both.
 - Beta
 - Theta
 - Delta

Cz Bone

- 4 frequency Bands, 28 features per band, and a target class for Eyes Opened and Eyes Closed status.
 - Alpha at (8-11 Hz), (11-14 Hz) and the total of both.
 - Beta at (8-11 Hz), (11-14 Hz) and the total of both.
 - Theta
 - Delta

Building Models

Experiment 1: Bands Analyzed Individually

Eyes Opened & closed result for Mastoid bone

Bands	Number of Features	Accuracy %	FP% Healthy	FP% Depressed
	29 features of EC	75%	4	19
Alpha	12 features (GA+LDA)	<u>83%</u>	<u>5</u>	<u>8</u>
Аірпа	29features of EO	52%	1	44
	15 features (GA+LDA)	<u>80%</u>	<u>9</u>	<u>10</u>
	29 features of EC	65%	26	7
Data	10 features (GA+LDA)	<u>78%</u>	<u>9</u>	<u>12</u>
29 features of EO	80%	10	9	
	11 features (GA+LDA)	<u>77%</u>	<u>9</u>	<u>13</u>
	29 features of EC	52%	1	45
Delta 18 features (GA+LDA) 29 features of EO 10 features (GA+LDA)	<u>80%</u>	<u>8</u>	<u>11</u>	
	62%	11	25	
	<u>74%</u>	<u>21</u>	<u>4</u>	
	29 features of EC	75%	4	19
13 features (GA+LDA)	13 features (GA+LDA)	<u>83%</u>	<u>5</u>	<u>8</u>
Пина	29 features of EO	72%	15	12
	10 features (GA+LDA)	<u>82%</u>	<u>4</u>	<u>13</u>

Experiment 2: Bands Analyzed Together

Alpha (8-11Hz), Beta, Delta & Theta (Total samples 91)

• Eyes Closed (Mastoid Reference)-

Methods	Accuracy	FP% – Healthy	FP% – Depressed
112 raw features of EC	84%	6	9
60 features processed by GA+LDA	<u>94%</u>	<u>4</u>	<u>2</u>

• Eyes Opened (Mastoid Reference)-

Methods	Accuracy	FP% – Healthy	FP% – Depressed
112 raw features of EO	88%	8	3
58 features processed by GA+LDA	<u>94%</u>	<u>2</u>	<u>4</u>

Conclusions

- We found that **combining the four bands together during the analysis showed a higher accuracy** comparing to individual analysis, meaning those bands complement each other for better identifying depressed patients.
- According to the results, references generated from the Mastoid Bone showed higher accuracy compared with Cz references.

Thank You !

Questions?

